|试卷下载
搜索
    上传资料 赚现金
    2022年冀教版九年级数学下册第三十章二次函数章节练习试题(含解析)
    立即下载
    加入资料篮
    2022年冀教版九年级数学下册第三十章二次函数章节练习试题(含解析)01
    2022年冀教版九年级数学下册第三十章二次函数章节练习试题(含解析)02
    2022年冀教版九年级数学下册第三十章二次函数章节练习试题(含解析)03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试随堂练习题

    展开
    这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共32页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    2、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
    A. B. C. D.
    3、已知二次函数y=ax2+4x+1的图象与x轴有公共点,则a的取值范围是( )
    A.a<4 B.a≤4 C.a<4且a≠0 D.a≤4且a≠0
    4、抛物线y=4(2x﹣3)2+3的顶点坐标是(  )
    A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)
    5、已知二次函数,当时,随的增大而减小,则的取值范围是( )
    A. B. C. D.
    6、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )

    A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
    7、若关于的一元二次方程的两根分别为,,则二次函数的对称轴为直线( )
    A. B. C. D.
    8、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
    A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
    C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
    9、二次函数y=ax2+bx+c的图像全部在x轴的上方,下列判断中正确的是( )
    A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>0
    10、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为(  )

    A.②③ B.②④ C.①②③ D.②③④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知的三个顶点为, 将向右平移 个单位后, 某一边的中点恰好落在二次函数的图象上, 则的值为____________.
    2、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)

    3、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
    4、若抛物线与轴交于原点,则的值为 __.
    5、用“描点法”画二次函数的图象时,列了如下表格:

    ……


    0
    1
    2
    ……

    ……
    6.5




    ……
    当时,二次函数的函数值______
    三、解答题(5小题,每小题10分,共计50分)
    1、已知二次函数的图像经过点,,.
    (1)求二次函数的表达式;
    (2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;
    (3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.
    2、在平面直角坐标系中,抛物线交轴于点,点,(点在点的左侧),点是抛物线上一点.
    (1)若,时,用含的式子表示;
    (2)若,,,的外接圆为,求点的坐标和弧的长;
    (3)在(1)的条件下,若有最小值,求此时的抛物线解折式
    3、在平面直角坐标系中,抛物线交轴于点,,过点的直线交抛物线于点.
    (1)求该抛物线的函数表达式;
    (2)若点是直线下方抛物线上的一个动点(不与点,重合),求面积的最大值;
    (3)若点在抛物线上,点在直线上.试探究:是否存在点,,使得,同时成立?若存在,请直接写出点的坐标;若不存在,请说明理由.
    4、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.

    (1)求此抛物线的表达式;
    (2)若 ,求点P的坐标;
    (3)连接AC,求 PAC面积的最大值及此时点P的坐标.
    5、已知二次函数的图像经过点(1,4)和点(2,3).
    (1)求这个二次函数的表达式;
    (2)求该二次函数图像的顶点坐标.
    (3)当x在什么范围内时,y随x的增大而减小?

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    2、B
    【解析】
    【分析】
    由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
    【详解】
    解:由题意知,平移后的抛物线解析式为
    将代入解析式得,与A中点坐标不同,故不符合要求;
    将代入解析式得,与B中点坐标相同,故符合要求;
    将代入解析式得,与C中点坐标不同,故不符合要求;
    将代入解析式得,与D中点坐标不同,故不符合要求;
    故选B.
    【点睛】
    本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
    3、D
    【解析】
    【分析】
    由二次函数的定义得a≠0,再由二次函数y=ax2+4x+1的图象与x轴有公共点得到Δ≥0,解不等式即可.
    【详解】
    解:∵二次函数y=ax2+4x+1的图象与x轴有公共点,
    ∴Δ=42﹣4a×1≥0,且a≠0,
    解得:a≤4,且a≠0.
    故选:D.
    【点睛】
    本题考查二次函数的图象与x轴的交点,关键是Δ=b2−4ac决定抛物线与x轴交点的个数.
    4、A
    【解析】
    【分析】
    根据顶点式的顶点坐标为求解即可
    【详解】
    解:抛物线的顶点坐标是
    故选A
    【点睛】
    本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.
    5、D
    【解析】
    【分析】
    先求出对称轴x=,再由已知可得 b≥1,即可求b的范围.
    【详解】
    解:∵,
    ∴对称轴为直线x=b,开口向下,
    在对称轴右侧,y随x的增大而减小,
    ∵当x>1时,y随x的增大而减小,
    ∴1不在对称轴左侧,
    ∴b≤1,
    故选:D.
    【点睛】
    本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.
    6、C
    【解析】
    【分析】
    根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
    【详解】
    解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则

    故①正确;
    ∵二次函数的图象经过点,
    则当时,
    对称轴为直线,则时的函数值与的函数值相等,
    时,

    故②不正确
    对称轴为直线,
    ∴,即
    故③正确;
    ∵二次函数图象与轴有两个交点,则

    故④错误;
    对称轴为直线,则时的函数值与的函数值相等,

    ,是抛物线上两点,且,抛物线开口向上,

    故⑤正确
    故正确的是①③⑤
    故选C
    【点睛】
    本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
    7、C
    【解析】
    【分析】
    根据两根之和公式可以求出对称轴公式.
    【详解】
    解:∵一元二次方程ax2+bx+c=0的两个根为−2和4,
    ∴x1+x2=− =2.
    ∴二次函数的对称轴为x=−=×2=1.
    故选:C.
    【点睛】
    本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.
    8、B
    【解析】
    【分析】
    根据二次函数的图象与性质逐项分析即可.
    【详解】
    A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
    B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
    C、当a<0时, ,其顶点坐标为,当a=−1时,顶点坐标为(1,0 ),在x轴上,故命题错误;
    D、由于,抛物线的对称轴为直线x=1,当a>0且x≥1时,y随x增大而增大,故命题错误.
    故选:B
    【点睛】
    本题考查了二次函数的图象与性质、二次函数与一元二次方程的关系,熟练掌握这些知识是解题的关键.
    9、D
    【解析】
    【分析】
    由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出、,此题得解.
    【详解】
    解:二次函数的图象全部在轴的上方,
    ,,



    ,.
    故选:D.
    【点睛】
    本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.
    10、D
    【解析】
    【分析】
    根据二次函数的图象及性质即可判断.
    【详解】
    解:由函数图象可知,抛物线开口向上,
    ∴a>0,
    ∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
    ∴抛物线与x轴另一个交点坐标为(3,0),
    ∴当x>1时,y随x的增大而增大,故①错误;
    ∵﹣=1,
    ∴b=﹣2a,
    ∴2a+b=0,故②正确;
    当x=2时,y=4a+2b+c<0,故③正确;
    当x=﹣1时,y=a﹣b+c=3a+c=0,
    ∴c=﹣3a,
    ∴﹣a>c,
    ∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
    ∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
    即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
    正确的有②③④,
    故选:D.
    【点睛】
    本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
    二、填空题
    1、
    【解析】
    【分析】
    求得三角形三边中点的坐标,然后根据平移规律可得平移后的中点坐标,再根据平移后的中点在二次函数的图象上,进而算出m的值.
    【详解】
    解:∵△ABC的三个顶点为A(-1,-1),B(-1,3),C(-3,-3),
    ∴AB边的中点(-1,1),BC边的中点(-2,0),AC边的中点(-2,-2),
    ∵将△ABC向右平移m(m>0)个单位后,
    ∴AB边的中点平移后的坐标为(-1+m,1),BC边的中点平移后的坐标为(-2+m,0),AC边的中点平移后的坐标为(-2+m,-2),
    ∵二次函数的图象在x轴的下方,点(-1+m,1)在x轴的上方,
    ∴AB边的中点不可能在二次函数的图象上,
    把(-2+m,0)代入,得
    -2(-2+m)2=0,
    解得m=2;
    把(-2+m,-2)代入,得
    -2(-2+m)2=-2,
    解得m1=1,m2=3;
    ∴的值为1,2,3,
    故答案为1,2,3.
    【点睛】
    此题主要考查了平移的性质,中点坐标公式,二次函数图象上点的坐标特点,关键是掌握二次函数图象上的点(x,y)的横纵坐标满足二次函数解析式.
    2、6
    【解析】
    【分析】
    建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.
    【详解】
    建立平面直角坐标系如图:

    则抛物线顶点C坐标为(0,3),
    设抛物线解析式y=ax2+3,
    将A点坐标(﹣3,0)代入,可得:0=9a+3,
    解得:a=﹣,
    故抛物线解析式为y=﹣x2+3,
    当水面下降3米,通过抛物线在图上的观察可转化为:
    当y=﹣3时,对应的抛物线上两点之间的距离,
    也就是直线y=﹣3与抛物线相交的两点之间的距离,
    将y=﹣3代入抛物线解析式得出:﹣3=﹣x2+3,
    解得:x=±,
    所以水面宽度为米,
    故答案为:.
    【点睛】
    本题考查的是二次函数的应用,掌握二次函数的性质、正确建立平面直角坐标系是解题的关键.
    3、
    【解析】
    【分析】
    (1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.
    【详解】
    (1)解:,
    故答案为:.
    (2)当 时,
    当时,
    ∴ 与的大小关系是,
    故答案为:.
    【点睛】
    本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.
    4、-3
    【解析】
    【分析】
    根据函数图象经过原点时,,,代入即可求出的值.
    【详解】
    解:抛物线与轴交于原点,
    当时,,


    故答案为:.
    【点睛】
    本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.
    5、-4
    【解析】
    【分析】
    由表格得出抛物线的对称轴,根据二次函数的对称性解答可得.
    【详解】
    解:由表格可知当x=0和x=2时,y=-2.5,
    ∴抛物线的对称轴为x=1,
    ∴x=3和x=-1时的函数值相等,为-4,
    故答案为:-4.
    本题主要考查了二次函数图象上点的坐标特征,根据表格得出抛物线的对称轴是解题的关键.
    三、解答题
    1、 (1)
    (2)18
    (3)1或5
    【解析】
    【分析】
    (1)把点,,代入二次函数解析式:y=ax2+bx+c,求出即可;
    (2)分别求出A、B、C、P四点的坐标.利用S四边形ACBP=S△ABP+S△ABC进行计算;
    (3)观察抛物线的图像可直接得到结果.
    (1)
    解:(1)设二次函数的表达式为(,,为常数,),
    由题意知,该函数图象经过点,,,得

    解得,
    ∴二次函数的表达式为.
    (2)
    解:∵
    当y=0时,
    解得:x1=1,x2=5
    ∴点A坐标为(1,0)、点B坐标为(5,0);
    当x=0时,y=-5,
    ∴点C坐标为(0,-5);
    把化为y=-(x-3)2+4
    ∴点P坐标为(3,4);
    由题意可画图如下:

    ∴S四边形ACBP=S△ABP+S△ABC
    =
    =18,
    故答案是:18;
    (3)
    由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.
    故:m=1或.
    【点睛】
    本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力.
    2、 (1)
    (2)E点坐标为,弧长为
    (3)
    【解析】
    【分析】
    (1)将,代入,计算求解即可;
    (2)将与代入,得到,然后将解析式因式分解,得到点坐标分别为;如图,在直角坐标系中作,连接;点为中点,坐标为;点为中点,坐标为,,,有,,,,,得的值,进而可求出点坐标;,知,,AE= ,根据求解即可;
    (3),知,, 最小时,有,解得值,故可得值,进而可得出抛物线的解析式.
    (1)
    解:将与代入


    ∴用含的式子表示为.
    (2)
    解:将与代入



    ∴点坐标分别为
    如图,作,连接

    ∴,
    ∴点为中点,坐标为即;点为中点,坐标为即




    ∵,,

    ∴点坐标为



    ∴AE=

    ∴的坐标为,的长为.
    (3)
    解:由题意知
    ∵,




    ∵最小时,有解得

    ∴.
    【点睛】
    本题考查了代数式,待定系数法求二次函数解析式,二次函数最值,三角形相似的判定与性质,三角形的外接圆,弧长等知识.解题的关键与难点在于对知识的熟练掌握并能灵活运用.
    3、 (1)
    (2)
    (3)存在,.
    【解析】
    【分析】
    (1)利用待定系数法即可求得答案;
    (2)如图1,过点P作PD∥y轴,交x轴于点D,交BC于点E,作CF⊥PD于点F,连接PB,PC,设点P(m,m2-2m-3),则点E (m,,可得出PE=,再通过解方程组求出点C的坐标为,利用三角形面积公式和二次函数性质即可得出答案;
    (3)设M(t,t2-2t-3),N(n,,作MG⊥y轴于点G,NH⊥x轴于H,证明△OGM≌△OHN(AAS),得出GM=NH,OG=OH,建立方程组求解即可.
    (1)
    将点,代入中,得:

    解得,
    ∴该抛物线表达式为:
    (2)
    如图1,过点P作PD//y轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,

    设点,则点,

    联立方程组
    解得,,
    ∵点B的坐标为(3,0)
    ∴点C的坐标为




    (其中)

    ∴这个二次函数有最大值,
    ∴当时,的最大值为;
    (3)
    存在,
    ①如图②,

    设,N(n,,
    作MG⊥y轴于点G,NH⊥x轴于H,
    ∴∠OGM=∠OHN=90°,
    ∵OM=ON,∠MON=90°,∠GOH=90°,
    ∴∠MOG=∠NOH,
    在△OGM与△OHN中,

    ∴△OGM≌△OHN(AAS),
    ∴GM=NH,OG=OH,
    ∴,
    解得:,,
    ∴N1(3,0),N2,
    ②如图3,设M(t,t2﹣2t﹣3),N(n,,

    作MG⊥x轴于点G,NH⊥x轴于H,
    ∴∠OGM=∠OHN=90°,
    ∵OM=ON,∠MON=90°,∠GOH=90°,
    ∴∠MOG=∠NOH,
    在△OGM与△OHN中,

    ∴△OGM≌△OHN(AAS),
    ∴GM=NH,OG=OH,
    ∴,
    解得:,
    ∴;
    综上所述,点N的坐标为.
    【点睛】
    本题考查了待定系数法求函数的解析式、二次函数的图象与性质、几何图形的旋转、全等三角形的判定与性质及一元二次方程等知识点,运用数形结合思想、分类讨论思想及熟练掌握全等三角形判定和性质及二次函数性质是解题的关键.
    4、 (1);
    (2)P(,﹣2);
    (3)面积的最大值为8,此时点P(﹣2,﹣5).
    【解析】
    【分析】
    (1)由题意及抛物线解析式可得:,而OA=2OC=8OB,得出,,即可确定点A、B、C的坐标,利用交点式代入即可确定解析式;
    (2)根据(1)中解析式可得抛物线的对称轴为,当时,点P、C的纵坐标相同,横坐标之和除以2为对称抽,即可求解;
    (3)过点P作轴交AC于点H,设直线AC的解析式为:,将点、代入确定直线解析式,结合图象可得,与∆PHC底为同底,高的和为OA长度,代入三角形面积得出,据此即可得出面积的最大值及此时点P的坐标.
    (1)
    解:抛物线,则,
    ∴,
    ∵OA=2OC=8OB,
    ∴,,
    ∴点A、B、C的坐标分别为、、,
    ∴,
    将代入可得-2=a0+40-12,
    解得:,
    ∴y=x+4x-12=x2+72x-2,
    故抛物线的表达式为:;
    (2)
    解:,
    其中:,,,
    ∴抛物线的对称轴为,
    ∵,
    ∴点P、C的纵坐标相同,
    ∴根据函数的对称性得点;
    (3)
    解:过点P作轴交AC于点H,

    设直线AC的解析式为:,
    将点、代入可得:
    0=-4k+b-2=b,
    解得:,
    直线AC的解析式为:,
    ∴,
    ∴,

    =12×4×(-12x-2-x2-72x+2),

    ∵,
    ∴当时,,此时面积最大,
    当时,

    ∴,
    答:的面积最大为8,此时点.
    【点睛】
    题目主要考查利用待定系数法确定一次函数与二次函数解析式,二次函数图象的基本性质等,理解题意,结合图象作出相应辅助线,综合运用二次函数基本性质是解题关键.
    5、 (1)
    (2)
    (3)当时,y随x的增大而减小
    【解析】
    【分析】
    (1)将点(1,4)和(2,3)代入中,得,进行计算即可得;
    (2)将配方得,即可得;
    (3)根据二次函数的性质得即可得.
    (1)
    解:将点(1,4)和(2,3)代入中,得

    解得
    则该二次函数表达式为.
    (2)
    解:
    配方得:,
    则顶点坐标为(1,4).
    (3)
    解:根据二次函数的性质得,当时,y随x的增大而减小.
    【点睛】
    本题考查了二次函数,解题的关键是掌握二次函数的性质.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试课时训练: 这是一份数学九年级下册第30章 二次函数综合与测试课时训练,共34页。试卷主要包含了若二次函数y=ax2+bx+c,二次函数图像的顶点坐标是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试练习题: 这是一份冀教版九年级下册第30章 二次函数综合与测试练习题,共28页。试卷主要包含了二次函数图像的顶点坐标是,二次函数y=a+bx+c等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map