初中数学冀教版九年级下册第30章 二次函数综合与测试综合训练题
展开九年级数学下册第三十章二次函数定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
2、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米 B.10米 C.4米 D.12米
3、一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
4、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为( )
A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
5、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x
…
-3
-2
-1
0
1
…
y
…
-6
0
4
6
6
…
给出下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴在y轴的右侧;
③抛物线的开口向下;
④抛物线与x轴有且只有1个公共点.
以上说法正确是( )
A.① B.①② C.①②③ D.①②③④
6、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
A.x=-3 B.x=-1 C.x=2 D.x=3
7、抛物线,,的图象开口最大的是( )
A. B. C. D.无法确定
8、若二次函数与轴的一个交点为,则代数式的值为( )
A. B. C. D.
9、已知二次函数的图象经过,,则b的值为( )
A.2 B. C.4 D.
10、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.
2、最大值与最小值之和为_________.
3、二次函数的图像与x轴公共点的个数是______.
4、已知多项式除以的余数分别为,则除以所得余式的最大值为_________.
5、当x≥m时,两个函数y1=﹣(x﹣4)2+2和y2=﹣(x﹣3)2+1的函数值都随着x的增大而减小,则m的最小值为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式;
(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交于点,过点作,垂足为.求线段的最大值;
(3)已知为抛物线对称轴上一动点,若是直角三角形,求出点的坐标.
2、已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).
(1)求该抛物线的函数表达式和顶点坐标;
(2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).
①求直线BC的解析式;
②若x3<x1<x2,结合函数的图象,求x1+x2+x3的取值范围.
3、如图1,在平面直角坐标系中,直线与抛物线相交于A,B两点(点B在第一象限),点C在AB的延长线上.且(n为正整数).过点B,C的抛物线L,其顶点M在x轴上.
(1)求AB的长;
(2)①当时,抛物线L的函数表达式为 ;
②当时.求抛物线L的函数表达式 ;
(3)如图2,抛物线E:经过B、C两点,顶点为P.且O、B、P三点在同一直线上,
①求与n的关系式;
②当时,设四边形PAMC的面积,当时,设四边形PAMC的面积(k,t为正整数,,),若,请直接写出值.
4、如图,在平面直角坐标系中,已知点的坐标为,且,抛物线()图象经过,,三点.
(1)求抛物线的解析式;
(2)是抛物线对称轴上的一点,当的值最小时,求点坐标;
(3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.
5、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.
(1)求 b 的值;
(2)当 y1< y2 时,直接写出 x 的取值范围.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
C.由图象可知,当x=1时,y=,故C不符合题意,
D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
故选:D.
【点睛】
本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
2、B
【解析】
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为﹣4,
∵水面AB宽为20米,
∴A(﹣10,﹣4),B(10,﹣4),
将A代入y=ax2,
﹣4=100a,
∴a=﹣,
∴y=﹣x2,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为﹣1,
∴﹣1=﹣x2,
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
3、C
【解析】
【分析】
逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
【详解】
A、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,A不可能;
B、∵二次函数图象开口向上,对称轴在y轴右侧,
∴a>0,b<0,
∴一次函数图象应该过第一、三、四象限,B不可能;
C、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,C可能;
D、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,D不可能.
故选:C.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据a、b的正负确定一次函数图象经过的象限.
4、A
【解析】
【分析】
按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
【详解】
解:抛物线y=2x2先向左平移2个单位得到解析式:y=2(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=2(x+2)2+3.
故选:A.
【点睛】
本题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.
5、C
【解析】
【分析】
根据表中数据和抛物线的对称性,可得抛物线的对称轴是直线x=,可得到抛物线的开口向下,再根据抛物线的性质即可进行判断.
【详解】
解:根据图表,抛物线与y轴交于(0,6),故①正确;
∵抛物线经过点(0,6)和(1,6),
∴对称轴为x==>0,即抛物线的对称轴在y轴的右侧,故②正确;
当x<时,y随x的增大而增大,
∴抛物线开口向下,故③正确,
∵抛物线经过点(-2,0),
设抛物线经过点(x,0),
∴x==,
解得:x=3,
∴抛物线经过(3,0),即抛物线与x轴有2个交点(-2,0)和(3,0),
故④错误;
综上,正确的有①②③,
故选:C.
【点睛】
本题考查了二次函数及其图象性质,解决问题的关键是注意表格数据的特点,结合二次函数性质作判断.
6、C
【解析】
【分析】
一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
【详解】
解:一元二次方程的两个根分别是和5,
则二次函数图象与轴的交点坐标为、,
根据函数的对称性,函数的对称轴为直线,
故选:C.
【点睛】
本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
7、A
【解析】
【分析】
先令x=1,求出函数值,然后再比较二次项系数的绝对值的大小即可解答.
【详解】
解:当x=1时,三条抛物线的对应点是(1,)(1,-3),(1,1),
∵||<|1|<|-3|,
∴抛物线开口最大.
故选A.
【点睛】
本题主要考查了二次函数图象的性质,掌握二次函数解析式的二次项系数的绝对值越小,函数图象的开口越大.
8、D
【解析】
【分析】
把代入即可求出,则,进而可求出代数式的值.
【详解】
解:二次函数与轴的一个交点为,
时,,
,
,
故选:D.
【点睛】
本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.
9、C
【解析】
【分析】
由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
【详解】
解: 二次函数的图象经过,,
二次函数图象的对称轴为:
解得:
故选C
【点睛】
本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
10、C
【解析】
【分析】
先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
【详解】
解:抛物线的对称轴为:直线,
∵,
当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
二、填空题
1、
【解析】
【分析】
利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
【详解】
y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2
故本题答案为:y=(x﹣1)2+2.
【点睛】
本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.
2、##
【解析】
【分析】
将已知式子化成,分和两种情况,再利用一元二次方程根的判别式可得一个关于的不等式,然后利用二次函数的性质求出的取值范围,从而可得的最大值与最小值,由此即可得出答案.
【详解】
解:由得:,
①当时,;
②当时,则关于的方程根的判别式大于或等于0,
即,
整理得:,
解方程得:,
则对于二次函数,当时,的取值范围为,且,
综上,的取值范围为,
所以的最大值为3,最小值为,
所以的最大值与最小值之和为,
故答案为:.
【点睛】
本题考查了一元二次方程根的判别式、二次函数的性质等知识,将求最值问题转化为一元二次方程问题是解题关键.
3、0
【解析】
【分析】
令,得到一元二次方程,根据一元二次方程根的判别式求解即可.
【详解】
令,则
二次函数的图像与x轴无公共点.
故答案为:0
【点睛】
本题考查了二次函数与轴的交点问题,转化为一元二次方程根的判别式求解是解题的关键.
4、5
【解析】
【分析】
先根据已知得出,再设,从而可得一个关于的方程组,解方程组可得的值,然后利用二次函数的性质即可得出答案.
【详解】
解:多项式除以的余数为1,
,
当时,,
同理可得:,
设除以所得商式为,余式为(因为除式是三次的,所以余式至多是二次的),
则,
因此有,
解得a=-1b=6c=-4,
所以余式为,
由二次函数的性质得:当时,余式取得最大值,最大值为5,
故答案为:5.
【点睛】
本题考查了多项式的除法、二次函数的性质等知识点,正确设出余式的一般形式是解题关键.
5、4
【解析】
【分析】
先确定两个函数的开口方向和对称轴,再得出符合条件的x的取值范围,从而得到m的最小值.
【详解】
解:函数y1=﹣(x﹣4)2+2开口向下,对称轴为直线x=4,
函数y2=﹣(x﹣3)2+1开口向下,对称轴为直线x=3,
当函数值都随着x的增大而减小,
则x≥4,即m的最小值为4,
故答案为:4.
【点睛】
本题考查了二次函数的图像和性质,解题的关键是掌握二次函数的基本性质.
三、解答题
1、 (1)
(2)当时,有最大值,最大值是
(3)点的坐标为,,,
【解析】
【分析】
(1)由抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线为y=a(x+1)(x﹣3),将C(0,3)代入即可得y=﹣x2+2x+3;
(2)由B(3,0),C(0,3),可推得△DEM是等腰直角三角形,DM=DE,设直线BC为y=kx+b,用待定系数法可得直线BC为y=﹣x+3,设D(m,﹣m2+2m+3),则E(m,﹣m+3),即得DE=﹣m2+3m,由二次函数性质可得线段DM的最大值;
(3)设P(1,t),可得PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,分三种情况:①PC为斜边时,②PB为斜边时,③BC为斜边时,列出方程求解即可.
(1)
解:∵抛物线与轴交于、两点,
∴设抛物线解析式为,
将点坐标代入,得:,
解得:,
抛物线解析式为;
(2)
解:设直线的函数解析式为,
∵直线过点,,
∴,解得,
∴,
设,,
∴,
∵,,
∴,
∴,
∵轴,
∴,
∴,
又∵,
在中,
∴,
∵,
∴当时,有最大值,最大值是;
(3)
解:抛物线的对称轴为直线,
设P(1,t),而B(3,0),C(0,3),
∴PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,
①当是斜边时,,解得:;
②当是斜边时,,解得:;
③当是斜边时,,
整理,得:,解得:,
故点的坐标为:,,,
【点睛】
本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、直角三角形的判定等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.
2、 (1)y=x2-2x-3,(1,−4)
(2)①y=x−3;②
【解析】
【分析】
(1)把A(-1,0)代入y=x2+bx-3其凷b得到抛物线解析式,然后把一般式配成顶点式得到抛物线的顶点坐标;
(2)①解方程x2-2x-3=0得B(3,0),再确定C(0,-3),然后利用待定系数法求直线BC的解析式;
②如图,利用对称性得到x2-1=1-x1,则x1+x2=2,所以x1+x2+x3=2+x3,利用函数图象得到-1<x3<0,从而得到1<x1+x2+x3<2.
(1)
解:把A(-1,0)代入y=x2+bx-3得1-b-3=0,解得b=-2,
∴抛物线解析式为y=x2-2x-3,
∵y=(x-1)2-4,
∴抛物线的顶点坐标为(1,-4);
(2)
解:①当y=0时,x2-2x-3=0,解得x1=-1,x2=3,则B(3,0),
当x=0时,y=x2-2x-3=-3,则C(0,-3),
设直线BC的解析式为y=mx+n,
把B(3,0),C(0,-3)代入得,解得,
∴直线BC的解析式为y=x-3;
②如图,
x2-1=1-x1,
∴x1+x2=2,
∴x1+x2+x3=2+x3,
∵y3<-3,即x3-3<-3,
∴x3<0,
∵y=-4时,x-3=-4,解得x=-1,
∴-1<x3<0,
∴1<x1+x2+x3<2.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
3、 (1)
(2)①;②
(3)①;②或
【解析】
【分析】
(1)联立直线与抛物线组成方程组解方程组得出点A、B的坐标分别为、,根据两点距离公式;
(2)①当时,,则点C的坐标为,求抛物线顶点M横坐标为,设抛物线L的表达式为,将点B坐标代入得出,解方程即可;②当时,,则点C的坐标为,求出抛物线顶点M横坐标为,设抛物线L的表达式为,将点B的坐标代入得出,解方程即可;
(3)①根据,则点C的坐标为,则抛物线顶点M横坐标为,可求点P的横坐标也为,待定系数法求直线OB的表达式为,根据点P在直线OB上,求出点P的坐标为;根据顶点式写出抛物线E的表达式为,将点B的坐标代入上式得,求解即可;②,当时,,当时,,根据,得出,根据k,t为正整数,,,得出,或,满足上述条件,求出或10即可.
(1)
解:联立直线与抛物线组成方程组,
消去y得:,
解得,
故点A、B的坐标分别为、,
∴;
(2)
解:①当时,,则点C的坐标为,
则抛物线顶点M横坐标为,
设抛物线L的表达式为,
将点B的坐标代入上式得:,
解得,
故答案为:;
②当时,,则点C的坐标为,
则抛物线顶点M横坐标为,
故设抛物线L的表达式为,
将点B的坐标代入上式得:,
解得,
故抛物线的表达式为:;
(3)
①当时,,则点C的坐标为,
则抛物线顶点M横坐标为,
故点P的横坐标也为,
设OB的解析式为y=sx,
点B代入得1=,
解得,
直线OB的表达式为,
∵点P在直线OB 上,
当时,,故点P的坐标为;
则抛物线E的表达式为,
将点B的坐标代入上式得:,
解得:;
②,
,
,
,
当时,,
当时,,
∵,即,即,
∵k,t为正整数,,,
∴,或,满足上述条件,
即或10,
由①知,,
∴或.
【点睛】
本题考查待定系数法求抛物线解析式,抛物线顶点式,解方程组,一次函数解析式,四边形面积,二元一次方程的整数解,代数式的值,掌握待定系数法求抛物线解析式,抛物线顶点式,解方程组,一次函数解析式,四边形面积,二元一次方程的整数解,代数式的值,是解题关键
4、 (1);
(2)();
(3)点P(2,-6),PD最大值为
【解析】
【分析】
(1)根据点B的坐标,得出OB的长,进而根据即可得到OA、OC的长,利用待定系数法求出函数解析式;
(2)利用配方法求出抛物线的对称轴,连接AC,交对称轴于一点即为点M,此时的值最小,求出直线AC的解析式,当时求出y的值即可得到点M的坐标;
(3)过点P作PH平行于y轴,交AC于点H,根据等腰直角三角形的性质求出∠OAC=∠OCA=45°,根据平行线的性质求出∠PHD=∠OCA=45°,设点P(x,),则点H(x,x-4),根据正弦函数定义得到,根据函数的性质得解问题.
(1)
解:∵点的坐标为,
∴OB=1,
∵,
∴OA=OC=4,
∴点A的坐标为(4,0),点C的坐标为(0,-4),
将点A、B、C的坐标代入中,得
,解得,
∴抛物线的解析式为;
(2)
解:∵,
∴抛物线的对称轴为直线,
连接AC,交对称轴于一点即为点M,此时的值最小,
设直线AC的解析式为,
∴,解得,
∴直线AC的解析式为y=x-4,
当时,,
∴点M的坐标为();
(3)
解:过点P作PH平行于y轴,交AC于点H,
∵OA=OC,
∴∠OAC=∠OCA=45°,
∴∠PHD=∠OCA=45°,
设点P(x,),则点H(x,x-4),
∴,
∵,
∴PD有最大值,当x=2时,PD最大值为,
此时点P(2,-6).
.
【点睛】
此题考查了待定系数法求抛物线解析式,抛物线的对称轴,化一般式为顶点式,最短路径问题,二次函数的性质,锐角三角函数,正确掌握抛物线的各知识点是解题的关键,这是一道二次函数与一次函数的综合题.
5、 (1)
(2)或
【解析】
【分析】
(1)将点A(4,4)代入进行解答即可得;
(2)由图像即可得.
(1)
解:将点A(4,4)代入得,
解得.
(2)
解:由图像可知,当或时,.
【点睛】
本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质.
初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共24页。
初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共29页。试卷主要包含了对于抛物线下列说法正确的是等内容,欢迎下载使用。
初中数学冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题,共31页。