开学活动
搜索
    上传资料 赚现金

    2022年精品解析冀教版九年级数学下册第三十章二次函数月考试题(精选)

    2022年精品解析冀教版九年级数学下册第三十章二次函数月考试题(精选)第1页
    2022年精品解析冀教版九年级数学下册第三十章二次函数月考试题(精选)第2页
    2022年精品解析冀教版九年级数学下册第三十章二次函数月考试题(精选)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试当堂检测题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试当堂检测题,共26页。试卷主要包含了抛物线的对称轴是,对于抛物线下列说法正确的是,抛物线的顶点坐标为等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数图像的顶点坐标是(       A.(0,-2) B.(-2,0) C.(2,0) D.(0,2)2、抛物线yx2+4x+5的顶点坐标是(  )A.25 B.21 C.(﹣25 D.(﹣213、如图,抛物线yax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为(  )A.2 B.3 C.3 D.D34、抛物线的对称轴是(     A.直线 B.直线 C.直线 D.直线5、已知是抛物线上的点,且,下列命题正确的是(       A.若,则 B.若,则C.若,则 D.若,则6、对于抛物线下列说法正确的是(       A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点7、抛物线的顶点坐标为(  )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)8、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是(       A. B.C. D.9、已知二次函数,当时,的增大而减小,则的取值范围是(       A. B. C. D.10、二次函数yax2+bx+c的图像全部在x轴的上方,下列判断中正确的是(       A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>0第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、将二次函数的图象先向右平移2个单位,再向下平移2个单位,最终所得图象的函数表达式为______.2、如图,在平面直角坐标系中,抛物线轴交于两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于两点;当时,直线分别与轴,抛物线交于两点;……;当为正整数)时,直线分别与轴,抛物线交于两点,则线段长为______.(用含的代数式表示)3、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.4、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)5、当xm时,两个函数y1=﹣(x﹣4)2+2和y2=﹣(x﹣3)2+1的函数值都随着x的增大而减小,则m的最小值为_____.三、解答题(5小题,每小题10分,共计50分)1、抛物线yax2+bx+ca<0)与x轴交于AB两点(点A在点B的左侧),且OAOB,与y轴交于点C(1)求证:b=0;(2)点P是第二象限内抛物线上的一个动点,APy轴交于点D.连接BP,过点AAQBP,与抛物线交于点Q,且AQy轴交于点E①当a=﹣1时,求QP两点横坐标的差;(用含有c的式子来表示)②求的值.2、如图,在平面直角坐标系中,开口向上的抛物线与轴交于两点,为抛物线的顶点,为坐标原点.若)的长分别是方程的两根,且(1)求抛物线对应的二次函数的解析式;(2)过点交抛物线于点,求点的坐标;(3)在(2)的条件下,过点任作直线交线段于点,设点、点到直线的距离分别为,试求的最大值.3、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.(1)求日销售量y与时间t的函数表达式.(2)哪一天的日销售利润最大?最大利润是多少?4、(1)解方程:2x2﹣3x﹣1=0;(2)用配方法求抛物线yx2+4x﹣5的开口方向、对称轴和顶点坐标.5、某运动员在推铅球时,铅球经过的路线是抛物线的一部分(如图),落地点B的坐标是(10,0),已知抛物线的函数解析式为y=﹣+c(1)求c的值;(2)计算铅球距离地面的最大高度. -参考答案-一、单选题1、C【解析】【分析】直接利用顶点式写出二次函数的顶点坐标即可得到正确的选项.【详解】解:抛物线的顶点坐标为故选:C.【点睛】本题考查了二次函数的性质,解题的关键是了解二次函数的顶点式,难度不大.2、D【解析】【分析】利用顶点公式(﹣),进行解题.【详解】解:∵抛物线yx2+4x+5x=﹣=﹣=﹣2,y=1∴顶点为(﹣21故选:D【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣).3、B【解析】【分析】先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.【详解】∵抛物线yax2+bx+c的顶点为P(﹣2,2),yax+2)2+2,∵与y轴交于点A(0,3),∴3=a(0+2)2+2,解得a ∴原抛物线的解析式为:yx+2)2+2,∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),∴平移后的抛物线为yx﹣1)2﹣1,∴当x=0时,yA′的坐标为(0,),AA′的长度为:3﹣()=3故选:B.【点睛】本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.4、B【解析】【分析】由抛物线解析式的顶点式即可求得抛物线的对称轴.【详解】抛物线的对称轴是直线故选:B【点睛】本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h5、C【解析】【分析】先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.【详解】解:抛物线的对称轴为:直线,点到对称轴的距离近,即,当,点到对称轴的距离远,即故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.6、D【解析】【分析】根据二次函数的性质对各选项分析判断即可得解.【详解】解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,∴A选项不正确;由抛物线,可知其最小值为-2,∴B选项不正确;由抛物线,可知其顶点坐标,∴C选项不正确;在抛物线中,=b²-4ac=8>0,与与x轴有交点,∴D选项正确;故选:D.【点睛】本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.7、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.8、B【解析】【分析】由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.【详解】解:将抛物线先向上平移1个单位,则函数解析式变为 再将向左平移2个单位,则函数解析式变为故选:B.【点睛】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.9、D【解析】【分析】先求出对称轴x,再由已知可得 b1,即可求b的范围.【详解】解:∵∴对称轴为直线xb,开口向下,在对称轴右侧,yx的增大而减小,∵当x1时,yx的增大而减小,∴1不在对称轴左侧,b1故选:D【点睛】本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.10、D【解析】【分析】由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出,此题得解.【详解】解:二次函数的图象全部在轴的上方,故选:D.【点睛】本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.二、填空题1、y=(x﹣2)2﹣2.【解析】【分析】根据函数图象向右平移自变量减,向下平移常数项减,可得答案.【详解】解;将二次函数yx2的图象向右平移2个单位,再向下平移2个单位后,所得图象的函数表达式是y=(x﹣2)2﹣2,故答案为:y=(x﹣2)2﹣2.【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减自变量,上加下减常数项.2、【解析】【分析】根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.【详解】x轴交于AB两点(点A在点B左侧),,则解得:A点坐标为(-1,0).∵直线经过点A解得:∴该直线解析式为时,直线解析式为,则的坐标为(0,n).联立,即解得:的横坐标为n+1.代入中,得:的坐标为().故答案为:【点睛】本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出的坐标是解答本题的关键.3、##【解析】【分析】分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在RtPAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.【详解】解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,可知:顶点B(9,12),抛物线经过原点,设抛物线的解析式为y=ax-9)2+12,将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−故抛物线的解析式为:y=-(x−9)²+12,PC=12,=1:2,∴点C的坐标为(12,0),AC=6,即可得点A的坐标为(12,6),x=12时,y=−(12−9)²+12==CEEA的正上方,AE=CE-AC=-6=故答案为:【点睛】本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.4、6【解析】【分析】建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.【详解】建立平面直角坐标系如图:则抛物线顶点C坐标为(03),设抛物线解析式yax2+3A点坐标(﹣30)代入,可得:09a+3解得:a=﹣故抛物线解析式为y=﹣x2+3当水面下降3米,通过抛物线在图上的观察可转化为:y=﹣3时,对应的抛物线上两点之间的距离,也就是直线y=﹣3与抛物线相交的两点之间的距离,y=﹣3代入抛物线解析式得出:﹣3=﹣x2+3解得:x=±所以水面宽度为米,故答案为:【点睛】本题考查的是二次函数的应用,掌握二次函数的性质、正确建立平面直角坐标系是解题的关键.5、4【解析】【分析】先确定两个函数的开口方向和对称轴,再得出符合条件的x的取值范围,从而得到m的最小值.【详解】解:函数y1=﹣(x﹣4)2+2开口向下,对称轴为直线x=4,函数y2=﹣(x﹣3)2+1开口向下,对称轴为直线x=3,当函数值都随着x的增大而减小,x≥4,即m的最小值为4,故答案为:4.【点睛】本题考查了二次函数的图像和性质,解题的关键是掌握二次函数的基本性质.三、解答题1、 (1)见解析(2)①2;②2.【解析】【分析】(1)利用根与系数的关系即可证明b=0;(2)①设出P点坐标,然后令c=t²,然后表示出AB的坐标,先求出直线BP的解析式,即可得到直线AQ的解析式,然后联立抛物线与直线AQ解析式,求出Q点横坐标,即可求解;②同①的方法,令a=-s²,c=t²,设出P点坐标,分别求出DE的坐标,代入计算即可求解.(1)解:设方程ax2+bx+c=0两根为x1x2∵抛物线yax2+bx+ca<0)与x轴交于AB两点,且OAOBx1=-x2,即x1+x2=0,x1+x2=-∴-=0,a<0,b=0;(2)解:①当a=﹣1时,令c=t2,抛物线的解析式为y=-x2+t2解方程-x2+t2=0,得:x1=tx2=-tA(-t,0),B(t,0),设点P的坐标为(p-p2+ t2),设直线PB的解析式为y=kx+m,解得:∴直线PB的解析式为y=x+AQBP   设直线AQ的解析式为y=x+nA(-t,0)代入得:n=∴直线AQ的解析式为y=联立y=y=-x2+ t2得:整理得:解得x1=-tx2=p+2t∴点Q的横坐标为p+2tQP两点横坐标的差为p+2t-p=2t=2②令c=t2a=-s²,抛物线的解析式为y=-s²x2+t2解方程-s²x2+t2=0,得:x1=x2=-A(-,0),B(,0),C(0,t2),设点P的坐标为(p,-s²p2+ t2),同理求得直线PB的解析式为y=x+直线AQ的解析式为y=x=0,则y=   即点E的坐标为(0,),同理求得直线AP的解析式为y=x=0,则y=即点D的坐标为(0,),OD=OE=OC=【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,解一元二次方程,一元二次方程的根与系数的关系等知识点,解答本题的关键是明确题意,找出所求问题需要的条件,画出相应的图形,利用数形结合的思想解答.2、 (1)(2)点的坐标为(3)【解析】【分析】(1)先求出的两根,可得点的坐标为,点的坐标为.从而得到的坐标为.再由.可得的坐标为.然后设抛物线对应的二次函数的解析式为.把点代入,即可求解;(2)根据题意可设点的坐标为,则有.再由点在抛物线上,可得.从而得到,即可求解;(3)由(2)知:,而,可得到,然后过点A.根据三角形的面积,可得.再由,可得,即可求解.(1)解:如图,过点轴于,则的中点.解方程得:,则点的坐标为,点的坐标为的坐标为又因为的坐标为设抛物线对应的二次函数的解析式为∵抛物线过点,则,解得:故抛物线对应的二次函数的解析式为(2)又∵设点的坐标为,则有∵点在抛物线上,化简得:解得:(舍去).故点的坐标为(3)由(2)知:,而过点A即此时的最大值为【点睛】本题主要考查了二次函数与三角形的综合题,等腰三角形的性质,熟练掌握二次函数的图象和性质等腰三角形的性质是解题的关键.3、 (1)y=﹣2t+2001≤t≤80t为整数)(2)30天的日销售利润最大,最大利润为2450【解析】【分析】(1)设日销售量y与时间t的函数解析式为y=kt+bk≠0),将(1,198)、(80,40)代入,得二元一次方程组,解得kb的值,再代入y=kt+b即可;(2)设日销售利润为w,根据日利润等于每千克的利润乘以日销售量可得w=(p-6)y,分两种情况讨论:①当1≤t≤40时,②当41≤t≤80时.(1)解:设日销售量y与时间t的函数解析式为y=kt+bk≠0),将(1,198)、(80,40)代入,得:解得:∴日销售量y与时间t的函数表达式为y=-2t+200(1≤t≤80,t为整数);(2)解:设日销售利润为w元,则w=(p-6)y①当1≤t≤40时,w=(t+16-6)(-2t+200)=-t-30)2+2450,∵-<0,∴当t=30时,w有最大值,最大值为2450元;②当41≤t≤80时,w=(-t+46-6)(-2t+200)=(t-90)2-100,∵1>0,∴当t≤90时,wt的增大而减小,∴当t=41时,w有最大值,最大值=(41-90)2-100=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.【点睛】本题考查了二次函数在销售问题中的应用,同时本题还考查了待定系数法求一次函数的解析式,解题关键是根据等量关系写出函数解析式.4、(1) ;(2)抛物线的开口向上,对称轴为直线 ,顶点坐标为【解析】【分析】(1)利用公式法,即可求解;(2)先将抛物线解析式化为顶点式,即可求解.【详解】解:(1) (2) ∴抛物线的开口向上,对称轴为直线 ,顶点坐标为【点睛】本题主要考查了解一元二次方程,二次函数的图象和性质,熟练掌握一元二次方程的解法,二次函数的图象和性质是解题的关键.5、 (1)(2)铅球距离地面的最大高度为【解析】【分析】(1)把(10,0)代入函数解析式中,即可求得c的值;(2)直接利用对称轴的值,代入函数关系式进而得出答案.(1)把(10,0)代入函数解析式中得:解得:(2)x=﹣时,y最大所以铅球距离地面的最大高度为3m.【点睛】本题考查了二次函数的图象与性质,掌握二次函数的图象与性质是关键,属于基础题. 

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试综合训练题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试综合训练题,共31页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    初中数学第30章 二次函数综合与测试课堂检测:

    这是一份初中数学第30章 二次函数综合与测试课堂检测,共33页。试卷主要包含了若点A,抛物线的对称轴是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试一课一练:

    这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共28页。试卷主要包含了若二次函数y=a等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map