


九年级下册第30章 二次函数综合与测试达标测试
展开
这是一份九年级下册第30章 二次函数综合与测试达标测试,共27页。试卷主要包含了抛物线的对称轴是,二次函数y=ax2﹣4ax+c,一次函数与二次函数的图象交点,根据表格对应值等内容,欢迎下载使用。
九年级数学下册第三十章二次函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数的图象如图所示,那么下列说法正确的是( )A. B.C. D.2、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )A.2 个 B.3 个 C.4 个 D.5 个.3、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )A.1 B.-1 C. D.无法确定4、抛物线的对称轴是( )A.直线 B.直线 C.直线 D.直线5、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<06、一次函数与二次函数的图象交点( )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点7、已知二次函数y=ax2+4x+1的图象与x轴有公共点,则a的取值范围是( )A.a<4 B.a≤4 C.a<4且a≠0 D.a≤4且a≠08、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )A. B.y≤2 C.y<2 D.y≤39、根据表格对应值:x1.11.21.31.4ax2+bx+c﹣0.590.842.293.76判断关于x的方程ax2+bx+c=2的一个解x的范围是( )A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定10、二次函数的图像如图所示,那么点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线与y轴的交点坐标为_________.2、如图,函数的图象过点和,下列判断:①;②;③;④和处的函数值相等.其中正确的是__(只填序号).3、抛物线y=x2+2x+的对称轴是直线______.4、如图,抛物线过点,且对称轴为直线,有下列结论:;;抛物线经过点与点,则;方程的一个解是;,其中所有正确的结论是__________.5、二次函数 y  2x21 的图象开口方向______.(填“向上”或“向下”)三、解答题(5小题,每小题10分,共计50分)1、如图,抛物线与x轴交于点A,B,与y轴交于点C.点P是线段BC上的动点(点P不与点B,C重合),连结AP并延长AP交抛物线于另一点Q,连结CQ,BQ,设点Q的横坐标为x.(1)①写出A,B,C的坐标:A( ),B( ),C( );②求证:是直角三角形;(2)记的面积为S,求S关于x的函数表达式;(3)在点P的运动过程中,是否存在最大值?若存在,求出的最大值;若不存在,请说明理由.2、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:x…0123…y…00…(1)求该二次函数的表达式;(2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______.3、 “互联网+”时代,网上购物备受消费者青睐,某网店专售一款电子玩具,其成本为每件100元,当售价为每件160元时,每月可销售200件.为了吸引更多买家,该网店采取降价措施,据市场调查反映:销售单价每降低1元,则每月可多销售5件,设每件电子玩具的售价为x元(x为正整数),每月销售量为y件.(1)直接写出y与x之间的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主决定每月从利润中捐出500元资助贫困学生,为了保证捐款后每月利润不低于11500元,且让消费者得到最大的实惠,该如何确定该电子玩具的价格?4、已知:在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A、B,点B的坐标为(3,0),与y轴相交于点C.求:(1)抛物线的表达式及顶点坐标;(2)△ABC的面积.5、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p=,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.(1)求日销售量y与时间t的函数表达式.(2)哪一天的日销售利润最大?最大利润是多少? -参考答案-一、单选题1、D【解析】【分析】根据二次函数图象性质解题.【详解】解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;C.由图象可知,当x=1时,y=,故C不符合题意,D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,故选:D.【点睛】本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.2、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;故选C.【点睛】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3、C【解析】【分析】分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;【详解】当a>0时,∵对称轴为x=,当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,∴4a+2-2=4.∴a=1,当a<0时,同理可得y有最大值为2; y有最小值为4a+2,∴2-(4a+2)=4,∴a=-1,综上,a的值为故选:C【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.4、C【解析】【分析】抛物线的对称轴为:,根据公式直接计算即可得.【详解】解:,其中:,,,,故选:C.【点睛】本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.5、C【解析】【分析】根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.【详解】解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,∵-2<0<2<3<5,∴y3<y2<y4<y1,若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,若y2y4<0,则y1y3<0,选项C符合题意,若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,故选:C.【点睛】本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.6、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根与的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.7、D【解析】【分析】由二次函数的定义得a≠0,再由二次函数y=ax2+4x+1的图象与x轴有公共点得到Δ≥0,解不等式即可.【详解】解:∵二次函数y=ax2+4x+1的图象与x轴有公共点,∴Δ=42﹣4a×1≥0,且a≠0,解得:a≤4,且a≠0.故选:D.【点睛】本题考查二次函数的图象与x轴的交点,关键是Δ=b2−4ac决定抛物线与x轴交点的个数.8、A【解析】【分析】根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案【详解】解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,∴另一交点为设抛物线解析式为,将点代入得解得抛物线解析式为则顶点坐标为当x>0时,函数值y的取值范围是故选A【点睛】本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.9、B【解析】【分析】利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.【详解】解:当x=1.3时,ax2+bx+c=2.29,当x=1.2时,ax2+bx+c=0.84,∵0.84<2<2.29,∴方程解的范围为1.2<x<1.3,故选:B【点睛】本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.10、C【解析】【分析】根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.【详解】由函数图像可得:∵抛物线开口向上,∴a>0,又∵对称轴在y轴右侧,∴,∴b<0,又∵图象与y轴交于负半轴,∴c<0,∴∴在第三象限故选:C【点睛】考查二次函数y=ax2+bx+c系数符号的确定.根据对称轴的位置、开口方向、与y轴的交点的位置判断出a、b、c的符号是解题的关键.二、填空题1、【解析】【分析】根据二次函数图像的性质,时,通过计算即可得到答案.【详解】当时,∴抛物线与y轴的交点坐标为 故答案为:.【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.2、①③④【解析】【分析】根据抛物线开口方向,对称轴以及与轴的交点即可判断①;根据、的符号得出,即可得到,根据时,得到,即可得到,即可判断②;根据抛物线与一元二次方程的关系即可判断③;根据抛物线的对称性即可判断④.【详解】解:抛物线开口向下,,抛物线交轴于正半轴,,,,,故①正确,,,,,时,,则,,,故②错误,的图象过点和,方程的根为,,方程的根为,,,故③正确;的图象过点和,抛物线的对称轴为直线,,和处的函数值相等,故④正确,故答案为:①③④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点:抛物线与轴交于;△决定抛物线与轴交点个数:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.3、x=﹣1【解析】【分析】抛物线的对称轴方程为: 利用公式直接计算即可.【详解】解:抛物线y=x2+2x+的对称轴是直线: 故答案为:【点睛】本题考查的是抛物线的对称轴方程,掌握“抛物线的对称轴方程的公式”是解本题的关键.4、②⑤【解析】【分析】由图象可知,抛物线开口向上,则,抛物线与轴交于负半轴,则,再由抛物线对称轴为直线,得到,即,即可判断①;根据抛物线的对称性可知抛物线过点,则当时,,由,可得,即可判断②;由抛物线对称轴为直线,且开口向上,则抛物线上的点,离对称轴水平距离越大,函数值越大,即可判断③;由cx2+bx+a=0,方程两边同时除以a得,再由方程的两个根分别为,,得到,,则即为,由此即可判断④;当对应的函数值为,当对应的函数值为,又时函数取得最小值,则,由此即可判断⑤.【详解】解:由图象可知,抛物线开口向上,则,抛物线与轴交于负半轴,则,∵抛物线对称轴为直线,∴,即,,故①错误;抛物线过点,且对称轴为直线,抛物线过点,当时,,,∴,故②正确;抛物线对称轴为直线,且开口向上,∴抛物线上的点,离对称轴水平距离越大,函数值越大,∵点(4,)与直线的距离为3,点(-3,)与直线的距离为4,,故③错误;∵cx2+bx+a=0∴方程两边同时除以a得,∵方程的两个根分别为,,∴,,∴即为,∴解得或,故④错误;当对应的函数值为,当对应的函数值为,又时函数取得最小值,∴,∴,又∵,∴,∴,故⑤正确.故答案为:②⑤.【点睛】本题主要考查了二次函数图像与其系数的关系,解一元二次方程,一元二次方程根与系数的关系,二次函数图像的性质等等,熟知相关知识是解题的关键.5、向上【解析】【分析】根据二次函数图象的性质,a>0,抛物线开口向上,a<0,抛物线开口向下可求解.【详解】∵a=2>0,∴二次函数y=2x2+1图象的开口方向是向上,故答案为:向上.【点睛】本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.三、解答题1、 (1)①-1,0;4,0;0,-2;②见解析(2)(3)存在,当时,最大,最大为.【解析】【分析】(1)①分别令即可求得抛物线与坐标轴的交点坐标;②根据点的坐标,分别求得进而勾股定理逆定理即可证明;(2)连接OQ,设点Q的坐标为,进而根据进行求解即可;(3)过点Q作于点H,证明,由(2)可得,进而列出关于的关系式,根据二次函数的性质求最值即可(1)①由,令,则,令,即解得,,故答案为:-1,0;4,0;0,-2; ②证明:∵,,∴,,∴∴是.(2)连接OQ,如图所示设点Q的坐标为(3)过点Q作于点H,如图所示∴∵∴∴当时,最大,最大为.【点睛】本题考查了二次函数坐标轴的交点问题,相似三角形的性质与判定,二次函数求面积问题,二次函数的最值问题,熟练运用以上知识是解题的关键.2、 (1)二次函数的表达式为: ;(2).【解析】【分析】(1)观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,再选一组值代入即可求出a值,解析式即可确定;(2)先根据顶点坐标求出关于y轴对称的顶点坐标,然后设抛物线解析式为,结合表中数据可得函数图象经过,代入求解即可确定抛物线解析式.(1)解:观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,把代入得,,∴,∴,即 ;(2)解:抛物线的顶点是,关于y轴的对称点,开口方向与原抛物线相同, 设二次函数的表达式为,在y轴上且在函数图象上,将其代入函数表达式为:,解得:,∴关于y轴对称的图象所对应的函数表达式为,故答案为:.【点睛】本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.3、 (1)y= -5x+1000(2)当销售单价降低10元时,每月获得的利润最大,最大利润是12500元;(3)140元【解析】【分析】(1)根据总件数=基础件数+增加件数=200+5(160-x),列出关系式即可;(2)根据总利润=单件利润×销售件数,构造二次函数,配方法求最值即可;(3)先根据题意,构造出符合题意的不等式,把不等式转化为一元二次方程,求得两个根,根据抛物线的性质,确定不等式的解集,结合题意,确定价格即可.(1)∵售价为每件160元时,每月可销售200件,销售单价每降低1元,则每月可多销售5件,∴y=200+5(160-x)=-5x+1000.(2)根据题意,得w=(x-100)(-5x+1000)= ,∵抛物线开口向下,∴当x=150时,w有最大值,且为12500,此时应降价160-150=10元,故当销售单价降低10元时,每月获得的利润最大,最大利润是12500元.(3)根据题意,得-500≥11500,当-500=11500时,解得,,∵抛物线w= 开口向下,∴-500≥11500的解集为140≤x≤160,∴让消费者得到最大的实惠,该如何确定该电子玩具的价格x=140元.【点睛】本题考查了销售数量与价格的关系,二次函数解决利润问题,二次函数图像与不等式解集的关系,一元二次方程的解法,熟练掌握二次函数的构造方法和性质是解题的关键.4、 (1)(2)3【解析】【分析】(1)把点的坐标代入抛物线,即可得出抛物线的表达式;(2)先求出,,,再利用三角形面积公式求解即可.(1)解:把点的坐标代入抛物线,得,解得,所以抛物线的表达式:;(2)解:抛物线的表达式,令时,,解得:,,当,,,,.【点睛】本题主要考查了用待定系数法求二次函数的解析式,解题的关键是正确的设出抛物线的解析式.5、 (1)y=﹣2t+200(1≤t≤80,t为整数)(2)第30天的日销售利润最大,最大利润为2450元【解析】【分析】(1)设日销售量y与时间t的函数解析式为y=kt+b(k≠0),将(1,198)、(80,40)代入,得二元一次方程组,解得k和b的值,再代入y=kt+b即可;(2)设日销售利润为w,根据日利润等于每千克的利润乘以日销售量可得w=(p-6)y,分两种情况讨论:①当1≤t≤40时,②当41≤t≤80时.(1)解:设日销售量y与时间t的函数解析式为y=kt+b(k≠0),将(1,198)、(80,40)代入,得:,解得:,∴日销售量y与时间t的函数表达式为y=-2t+200(1≤t≤80,t为整数);(2)解:设日销售利润为w元,则w=(p-6)y,①当1≤t≤40时,w=(t+16-6)(-2t+200)=-(t-30)2+2450,∵-<0,∴当t=30时,w有最大值,最大值为2450元;②当41≤t≤80时,w=(-t+46-6)(-2t+200)=(t-90)2-100,∵1>0,∴当t≤90时,w随t的增大而减小,∴当t=41时,w有最大值,最大值=(41-90)2-100=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.【点睛】本题考查了二次函数在销售问题中的应用,同时本题还考查了待定系数法求一次函数的解析式,解题关键是根据等量关系写出函数解析式.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。
这是一份初中数学第30章 二次函数综合与测试巩固练习,共29页。
这是一份初中第30章 二次函数综合与测试随堂练习题,共27页。试卷主要包含了已知点,抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。
