开学活动
搜索
    上传资料 赚现金

    2022年最新精品解析冀教版九年级数学下册第三十章二次函数课时练习试题(含答案解析)

    2022年最新精品解析冀教版九年级数学下册第三十章二次函数课时练习试题(含答案解析)第1页
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数课时练习试题(含答案解析)第2页
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数课时练习试题(含答案解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第30章 二次函数综合与测试综合训练题

    展开

    这是一份数学九年级下册第30章 二次函数综合与测试综合训练题,共30页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数课时练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )

    A.① B.② C.③ D.②③
    2、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.

    A.1 B.2 C.3 D.4
    3、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    4、二次函数的图像如图所示,那么点在( )

    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    5、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )

    A.2个 B.3个 C.4个 D.5个
    6、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过(  )

    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )

    A.2 个 B.3 个 C.4 个 D.5 个.
    8、已知点,,都在函数的图象上,则( )
    A. B. C. D.
    9、二次函数的自变量与函数值的部分对应值如下表:


    -3
    -2
    -1
    0
    1



    -11
    -3
    1
    1
    -3

    对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
    A.①② B.③④ C.①③ D.①②④
    10、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
    A.x=-3 B.x=-1 C.x=2 D.x=3
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、二次函数y=ax2+bx+c的部分对应值列表如下:
    x

    ﹣3
    0
    1
    3
    5

    y

    7
    ﹣8
    ﹣9
    ﹣5
    7

    则一元二次方程a(2x+1)2+b(2x+1)+c=﹣5的解为 _____.
    2、若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.
    3、将二次函数的图象先向右平移2个单位,再向下平移2个单位,最终所得图象的函数表达式为______.
    4、已知多项式除以的余数分别为,则除以所得余式的最大值为_________.
    5、如图,抛物线与轴交于点,,若对称轴为直线,点的坐标为(-3,0),则不等式的解集为______.

    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).

    (1)求c的值,并用含a的代数式表示b;
    (2)当a=时.
    ①求此函数的解析式,并写出当﹣4≤x≤2时,y的最大值和最小值;
    ②如图,抛物线y=ax2+bx+c与x轴的左侧交点为C,作直线AC,D为直线AC下方抛物线上一动点,与AC交于点F,作DM⊥AC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.
    2、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
    销售单价x(元)
    40
    60
    80
    日销售量y(件)
    80
    60
    40
    (1)求y与x的函数关系式;
    (2)求公司销售该商品获得的最大日利润.
    3、在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=a+bx+1恰好经过A,B,C三点中的两点.
    (1)判断点B是否在直线y=x+m上,并说明理由;
    (2)求a,b的值;
    (3)平移抛物线y=a+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
    4、如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.

    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?判断此时△ABP的形状,并证明你的结论.
    (3)在(2)的前提下,有一动点Q在抛物线上运动(线段AB的下方),当Q点运动到什么位置时,△ABQ的面积等于△ABP的面积.
    5、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
    (1)求的值;
    (2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
    (注:利润=(销售单价-进价)×销售量)

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.
    【详解】
    解:∵点M(a,b)在抛物线y=x(2-x)上,

    当b=-3时,-3=a(2-a),整理得a2-2a-3=0,
    ∵△=4-4×(-3)>0,
    ∴有两个不相等的值,
    ∴点M的个数为2,故①错误;
    当b=1时,1=a(2-a),整理得a2-2a+1=0,
    ∵△=4-4×1=0,
    ∴a有两个相同的值,
    ∴点M的个数为1,故②正确;
    当b=3时,3=a(2-a),整理得a2-2a+3=0,
    ∵△=4-4×3<0,
    ∴点M的个数为0,故③错误;
    故选:B.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.
    2、C
    【解析】
    【分析】
    由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
    【详解】
    解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,

    故①符合题意;
    二次函敞的图象过点,结合图象可得:
    在抛物线上,
    抛物线的对称轴为:


    故②符合题意;
    二次函敞的顶点坐标为:结合图象可得:


    故③不符合题意;
    当时,


    又由图象可得:时,

    解得:

    故④符合题意;
    综上:符合题意的有:①②④
    故选C
    【点睛】
    本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
    3、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    4、C
    【解析】
    【分析】
    根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.
    【详解】
    由函数图像可得:
    ∵抛物线开口向上,
    ∴a>0,
    又∵对称轴在y轴右侧,
    ∴,
    ∴b0,
    对称轴x=-<0,得b0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    8、C
    【解析】
    【分析】
    把点的坐标分别代入函数解析式可分别求得、、,再比较其大小即可.
    【详解】
    解:点,,都在函数的图象上,
    ,,,

    故选:C.
    【点睛】
    本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.
    9、A
    【解析】
    【分析】
    根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.
    【详解】
    解:把(-1,1),(1,-3),(-2,-3)代入,得

    解得,
    ∴二次函数式为:

    ∴二次函数的图像开口向下,故①正确;

    ∴对称轴为直线
    ∴当时,随的增大而减小,故②正确;
    当时,二次函数的最大值是,故③错误;
    若,是二次函数图像与轴交点的横坐标,则,故④错误
    ∴正确的是①②
    故答案为①②
    【点睛】
    本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
    10、C
    【解析】
    【分析】
    一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
    【详解】
    解:一元二次方程的两个根分别是和5,
    则二次函数图象与轴的交点坐标为、,
    根据函数的对称性,函数的对称轴为直线,
    故选:C.
    【点睛】
    本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
    二、填空题
    1、,
    【解析】
    【分析】
    从表中找到三对数值,将三对数值分别代入y=ax2+bx+c组成方程组,求出a、b、c的值,然后再运用因式分解法求解方程即可得到结论.
    【详解】
    解:将(-3,7),(0,-8),(1,-9)代入y=ax2+bx+c得,

    整理得,
    ②×3+①,得

    把代入②得,


    ∴一元二次方程a(2x+1)2+b(2x+1)+c=﹣5可变形为:
    即:

    ∴,或
    解得,,
    故答案为:,
    【点睛】
    本题考查了待定系数法求函数解析式和一元二次方程的解法,从图表中找到相关的量是解题的关键.
    2、
    【解析】
    【分析】
    利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
    【详解】
    y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2
    故本题答案为:y=(x﹣1)2+2.
    【点睛】
    本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.
    3、y=(x﹣2)2﹣2.
    【解析】
    【分析】
    根据函数图象向右平移自变量减,向下平移常数项减,可得答案.
    【详解】
    解;将二次函数y=x2的图象向右平移2个单位,再向下平移2个单位后,所得图象的函数表达式是y=(x﹣2)2﹣2,
    故答案为:y=(x﹣2)2﹣2.
    【点睛】
    本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减自变量,上加下减常数项.
    4、5
    【解析】
    【分析】
    先根据已知得出,再设,从而可得一个关于的方程组,解方程组可得的值,然后利用二次函数的性质即可得出答案.
    【详解】
    解:多项式除以的余数为1,

    当时,,
    同理可得:,
    设除以所得商式为,余式为(因为除式是三次的,所以余式至多是二次的),
    则,
    因此有,
    解得a=-1b=6c=-4,
    所以余式为,
    由二次函数的性质得:当时,余式取得最大值,最大值为5,
    故答案为:5.
    【点睛】
    本题考查了多项式的除法、二次函数的性质等知识点,正确设出余式的一般形式是解题关键.
    5、
    【解析】
    【分析】
    函数的对称轴为直线,与轴交点,则另一个交点,进而求解.
    【详解】
    解:函数的对称轴为直线,与轴交点,则另一个交点,
    观察函数图象知,不等式的解集为:,
    故答案为:.
    【点睛】
    本题考查了抛物线与轴的交点,主要考查函数图象上点的坐标特征,解题的关键是要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.
    三、解答题
    1、 (1)c=6;b=2a+4
    (2)①最小值为−,最大值为20;②D(−3,−).
    【解析】
    【分析】
    (1)分别把 A(0,6)和B(-2,-2)代入解析式,可得c和b的值.
    (2)①当a=时,此函数表达式为y=x2+x+6,图象开口向上,由顶点坐标公式可知顶点坐标,根据二次函数的性质,当在顶点时函数值最小观察图象结合增减性,当x=2时,y有最大值.②令y=0,得C的坐标,设直线AC的解析式为y=kx+m,把A(0,6),C(-6,0)代入可得直线AC解析式,设D(x,x2+x+6)则F(x,x+6),得FD的值,设△FDM的周长为l,则l=DF+DM+MF=,当FD最大时,周长最大,根据二次函数的性质可得最大值.
    (1)
    把(0,6)代入y=ax2+bx+c,
    得c=6.
    把(-2,-2)代入y=ax2+bx+6,
    得4a-2b+6=-2,
    ∴b=2a+4.
    (2)
    ①当a=时,
    ∴,且c=6
    ∴函数表达式为y=x2+x+6=,图象开口向上.
    ∴顶点坐标为,

    ∵-4≤x≤2,
    ∴当x=−时,y的最小值为−.
    观察图象结合增减性,当x=2时,y有最大值,
    把x=2代入y=x2+x+6,
    y的最大值为20.
    ②∵y=x2+x+6,
    令y=0,则x=-6或x=−,
    ∵点C在左侧,
    ∴C(-6,0)
    设直线AC的解析式为y=kx+m,
    把A(0,6),C(-6,0)代入y=kx+m,得
    m=6-6k+m=0
    解得k=1,m=6,
    ∴y=x+6
    设D(x,x2+x+6)则F(x,x+6)
    ∴FD=x+6−(x2+x+6)=−x2−x,
    ∵OA=OC=6,∠AOC=90°,
    ∴∠COA=90°,
    ∵DF∥AO,
    ∴∠DFM=∠CAO=45°,
    DM=FM=FD,
    设△FDM的周长为l,
    则l=DF+DM+MF=
    当FD最大时,周长最大,
    又∵,
    又∵−<0且-6<x<0,
    ∴x=-3时,FD有最大值,即此刻△FDM周长最大.
    把x=-3代入y=x2+x+6,
    得y=−,
    ∴D(−3,−).
    【点睛】
    本题考查二次函数的应用,解本题要熟练掌握二次函数的性质,求二次函数的解析式、待定系数法,数形结合是解题关键.
    2、 (1)y=-x+120;
    (2)最大日利润是2025元.
    【解析】
    【分析】
    (1)根据题中所给的表格中的数据,利用待定系数法可得其关系式,也可以根据关系直接写出关系式;
    (2)根据利润等于每件的利润乘以件数,再利用配方法求得其最值.
    (1)
    解:设解析式为y=kx+b,
    将(40,80)和(60,60)代入,可得,
    解得:,
    所以y与x的关系式为y=-x+120;
    (2)
    解:设公司销售该商品获得的日利润为w元,
    w=(x-30)y=(x-30)(-x+120)
    =-x2+150x-3600
    =-(x-75)2+2025,
    ∵x-30≥0,-x+120≥0,
    ∴30≤x≤120,
    ∵-1<0,
    ∴抛物线开口向下,函数有最大值,
    ∴当x=75时,w最大=2025,
    答:当销售单价是75元时,最大日利润是2025元.
    【点睛】
    本题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数的应用,在解题的过程中,注意正确找出等量关系是解题的关键,属于基础题目.
    3、 (1)在,见解析
    (2)a=﹣1,b=2
    (3)当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为
    【解析】
    【分析】
    (1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;
    (2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;
    (3)设平移后的抛物线为y=﹣+px+q,其顶点坐标为(,),根据题意得出=,由抛物线y=﹣+px+q与y轴交点的纵坐标为q,即可得出q=-=,从而得出q的最大值.
    (1)
    点B是在直线y=x+m上,理由如下:
    ∵直线y=x+m经过点A(1,2),
    ∴2=1+m,解得m=1,
    ∴直线为y=x+1,
    把x=2代入y=x+1得y=3,
    ∴点B(2,3)在直线y=x+m上;
    (2)
    ∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,
    ∴抛物线只能经过A、C两点,
    把A(1,2),C(2,1)代入y=a+bx+1得,
    解得a=﹣1,b=2;
    (3)
    由(2)知,抛物线为y=﹣+2x+1,
    设平移后的抛物线为y=﹣+px+q,
    ∴顶点坐标为(,),
    ∵其顶点仍在直线y=x+1上,
    ∴=,
    ∴q=-=,
    ∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.
    【点睛】
    本题考查了图像与点的关系,待定系数法确定函数解析式,配方法求二次函数最值,熟练掌握待定系数法,灵活配方求最值是解题的关键.
    4、 (1),C(1,0);
    (2)△ABP的形状为直角三角形,见解析;
    (3)Q的坐标为(﹣2+2,﹣2+2)或(﹣2﹣2,﹣2﹣2)
    【解析】
    【分析】
    (1)先通过直线求得与坐标轴的交点,然后应用待定系数法即可求得抛物线的解析式,进而求得抛物线与x轴的交点.
    (2)设出D的坐标(t,0),根据已知表示点E、P的坐标,根据PD⊥x轴即可求得线段PE关于t的解析式,配方即可得最大值,再算出此时的△ABP的三边即可得知其形状.
    (3)过P作AB的平行线l,通过平移得到直线l关于线段AB对称的直线l',再求得l'与抛物线交点即可得Q的坐标.
    (1)
    解:如图1,

    ∵直线y=x+4与x轴、y轴分别交于A、B两点,
    ∴A(﹣4,0),B(0,4),
    ∵抛物线y=﹣x2+bx+c经过A、B两点,
    ∴,
    解得,
    ∴抛物线的解析式为:y=﹣x2﹣3x+4,
    令y=0,则﹣x2﹣3x+4=0,
    解得x=﹣4或x=1,
    ∴C(1,0);
    (2)
    解:如图2,

    设D(t,0),
    ∴E(t,t+4),P(t,﹣t2﹣3t+4),
    ∴PE=﹣t2﹣3t+4﹣t﹣4=﹣(t+2)2+4,
    ∴当t=﹣2时,线段PE有最大值是4,此时P(﹣2,6);
    △ABP的形状为直角三角形,
    证明:∵AP2=(﹣2+4)2+(6﹣0)2=40,BA2=(﹣4﹣0)2+(0﹣4)2=32,BP2=(﹣2﹣0)2+(6﹣4)2=8,
    ∴BA2+BP2=AP2,
    ∴△ABP的形状为直角三角形;
    (3)
    解:如图,过P作AB的平行线l,

    设直线l的解析式为:y=x+m,
    代入(﹣2,6),得:6=﹣2+m,
    解得:m=8,即直线l:y=x+8,
    ∵直线AB:y=x+4,直线l:y=x+8,
    ∴将直线l向下平移8个单位即可得到直线l关于线段AB对称的直线l',
    ∴直线l':y=x,
    令y=x=﹣x2﹣3x+4,
    解得:x=﹣2+2或﹣2﹣2,
    ∴Q的坐标为(﹣2+2,﹣2+2)或(﹣2﹣2,﹣2﹣2).
    【点睛】
    此题是一次函数与二次函数的综合题,考查了求一次函数与坐标轴的交点,待定系数法求函数解析式,二次函数与坐标轴的交点,勾股定理的逆定理,二次函数的最值,一次函数的平移规律,一次函数与二次函数交点坐标,此题综合性比较强,较基础,综合掌握各知识点并应用是解题的关键.
    5、 (1)的值是500;
    (2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
    【解析】
    【分析】
    (1)根据利润=(销售单价-进价)×销售量列方程求解即可;
    (2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
    (1)
    解:由题意可得,,
    解得:,
    答:的值是500;
    (2)
    解:设利润为w元,
    由题意:,

    ∵-10

    相关试卷

    2020-2021学年第30章 二次函数综合与测试练习:

    这是一份2020-2021学年第30章 二次函数综合与测试练习,共31页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共32页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。

    冀教版第30章 二次函数综合与测试测试题:

    这是一份冀教版第30章 二次函数综合与测试测试题,共28页。试卷主要包含了对于二次函数,下列说法正确的是,若二次函数y=ax2+bx+c,已知点,若点A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map