


数学九年级下册第30章 二次函数综合与测试测试题
展开
这是一份数学九年级下册第30章 二次函数综合与测试测试题,共24页。试卷主要包含了根据表格对应值等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、同一直角坐标系中,函数和(是常数,且)的图象可能是( )A. B.C. D.2、抛物线y=x2+4x+5的顶点坐标是( )A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)3、若关于的一元二次方程的两根分别为,,则二次函数的对称轴为直线( )A. B. C. D.4、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>05、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )A. B. C. D.6、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )A. B.C. D.7、在平面直角坐标系中,将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是( )A.(4,2) B.(﹣2,2) C.(4,﹣2) D.(﹣2,﹣2)8、根据表格对应值:x1.11.21.31.4ax2+bx+c﹣0.590.842.293.76判断关于x的方程ax2+bx+c=2的一个解x的范围是( )A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定9、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )A. B. C. D.10、一次函数与二次函数在同一平面直角坐标系中的图象可能是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.2、将二次函数的图象先向右平移2个单位,再向下平移2个单位,最终所得图象的函数表达式为______.3、如图,抛物线与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连接OQ.则线段OQ的最大值是______.4、在平面直角坐标系中,抛物线与轴交于,两点,请写出一个使的的整数值 __.5、已知二次函数的图象顶点坐标是,还经过点,它的图象与轴交于、两点,则线段的长为______.三、解答题(5小题,每小题10分,共计50分)1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,求此二次函数表达式.2、已知二次函数y=x2-2x-3的图象为抛物线C.(1)写出抛物线C的开口方向、对称轴和顶点坐标;(2)当2≤x≤4时,求该二次函数的函数值y的取值范围;(3)将抛物线C先向右平移2个单位长度,得到抛物线C1;再将抛物线C1向下平移1个单位长度,得到抛物线C2,请直接写出抛物线C1,C2对应的函数解析式.3、如图,二次函数(m是实数,且)的图像与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C,已知点D位于第一象限,且在对称轴上,,点E在x轴的正半轴上,.连接ED并延长交y轴于点F,连接AF.(1)求A、B、C三点的坐标(用数字或含m的式子表示);(2)已知点Q在抛物线的对称轴上,当的周长的最小值等于,求m的值.4、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣2﹣101234…y…m03n305…其中,m= ,n= ;(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;(3)观察函数图像:①写出该函数的一条性质 ;②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2)5、在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象经过点(2,3),且交x轴于A(﹣1,0)、B(m,0),求m的值及二次函数图象的对称轴. -参考答案-一、单选题1、D【解析】【分析】根据一次函数,二次函数的图象与性质逐一分析两个解析式中的的符号,再判断即可.【详解】解:选项A:由的图象可得: 由的图象可得:则 故A不符合题意;选项B:由的图象可得: 由的图象可得:则而抛物线的对称轴为: 则 故B不符合题意;选项C:由的图象可得: 由的图象可得:则 故C不符合题意;选项D:由的图象可得: 由的图象可得:则 而抛物线的对称轴为: 则 故D符合题意;故选D【点睛】本题考查的是一次函数与二次函数的图象共存问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.2、D【解析】【分析】利用顶点公式(﹣,),进行解题.【详解】解:∵抛物线y=x2+4x+5∴x=﹣=﹣=﹣2,y==1∴顶点为(﹣2,1)故选:D.【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).3、C【解析】【分析】根据两根之和公式可以求出对称轴公式.【详解】解:∵一元二次方程ax2+bx+c=0的两个根为−2和4,∴x1+x2=− =2.∴二次函数的对称轴为x=−=×2=1.故选:C.【点睛】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.4、D【解析】【分析】由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.【详解】解:A、抛物线开口向下,且与轴正半轴相交,,,,结论A错误,不符合题意;B、抛物线顶点坐标为,,,,即,结论B错误,不符合题意;C、抛物线顶点坐标为,,,,结论C错误,不符合题意;D、,,,结论D正确,符合题意.故选:D.【点睛】本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.5、C【解析】【分析】由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.【详解】解:,抛物线开口向上,对称轴为,当时,随的增大而减小,在时,随的增大而减小,,解得,故选:C.【点睛】本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.6、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B.【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.7、D【解析】【分析】求出抛物线y=x2﹣2x+1的顶点坐标为 ,即可求解.【详解】解:∵ ,∴抛物线y=x2﹣2x+1的顶点坐标为 ,∴将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是 .故选:D【点睛】本题主要考查了二次函数图象的平移,熟练掌握二次函数图象平移法则“左加右减,上加下减”是解题的关键.8、B【解析】【分析】利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.【详解】解:当x=1.3时,ax2+bx+c=2.29,当x=1.2时,ax2+bx+c=0.84,∵0.84<2<2.29,∴方程解的范围为1.2<x<1.3,故选:B【点睛】本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.9、B【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),故当时,,即,故B错误,符合题意;C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;故选:B.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.10、C【解析】【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】A、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,A不可能;B、∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,B不可能;C、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,C可能;D、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,D不可能.故选:C.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据a、b的正负确定一次函数图象经过的象限.二、填空题1、【解析】【分析】根据点,的坐标,利用二次函数的性质可求出抛物线的对称轴,此题得解.【详解】解:抛物线经过点和点,抛物线的对称轴为直线.故答案为:.【点睛】本题考查了二次函数的性质,解题的关键是根据抛物线的对称性,找出抛物线的对称轴.2、y=(x﹣2)2﹣2.【解析】【分析】根据函数图象向右平移自变量减,向下平移常数项减,可得答案.【详解】解;将二次函数y=x2的图象向右平移2个单位,再向下平移2个单位后,所得图象的函数表达式是y=(x﹣2)2﹣2,故答案为:y=(x﹣2)2﹣2.【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减自变量,上加下减常数项.3、【解析】【分析】连接PB,当B、C、P三点共线,且点C在PB之间时,PB最大,而OQ是△ABP的中位线,即可求解.【详解】令,则x=±4,故点B(4,0),∴OB=4设圆的半径为r,则r=2,连接PB,如图,∵点Q、O分别为AP、AB的中点,∴OQ是△ABP的中位线,当B、C、P三点共线,且点C在PB之间时,PB最大,此时OQ最大,∵C(0,3)∴OC=3在Rt△OBC中,由勾股定理得:则,故答案为3.5.【点睛】本题考查了抛物线与坐标轴的交点,三角形中位线定理,勾股定理,圆的基本性质等知识,连接PB并运用三角形中位线定理是本题的关键和难点.4、2(答案不唯一)【解析】【分析】根据函数图象可以直接得到答案.【详解】解:如图,在平面直角坐标系中,抛物线与轴交于,两点,则当的的取值范围是:,的值可以是2.故答案为:2(答案不唯一).【点睛】此题考查了抛物线与x轴的交点坐标,需要学生熟悉二次函数图象的性质并要求学生具备一定的读图能力.5、6【解析】【分析】求出抛物线解析式,再求出、两点横坐标,利用坐标求出线段的长即可.【详解】解:二次函数的图象顶点坐标是,设抛物线解析式为,把代入得,,解得,抛物线解析式为,当y=0时,,解得,,,线段的长为2+4=6;故答案为:6.【点睛】本题考查了求二次函数解析式和抛物线与x轴交点,解题关键是求出抛物线解析式,熟练求出抛物线与x轴交点横坐标.三、解答题1、y=﹣x2﹣2x+3【解析】【分析】根据图象确定经过抛物线的三个点,设二次函数解析式为y=a(x+3)(x﹣1),再代入(0,3)利用待定系数法计算即可.【详解】解:由图象可知,抛物线经过(﹣3,0)、(1,0)、(0,3),设抛物线的解析式为:y=a(x+3)(x﹣1),代入点(0,3),则3=a(0+3)(0﹣1),解得:a=﹣1,则抛物线的解析式为:y=﹣(x+3)(x﹣1),整理得到:y=﹣x2﹣2x+3.【点睛】本题考查了二次函数解析式的求法,属于基础题,计算过程中细心即可.2、 (1)开口向上,对称轴为直线,顶点坐标为(2)(3),【解析】【分析】(1)将二次函数化为顶点式,由此可得答案;(2)分别求出时,时的函数值,根据函数的增减性解答;(3)根据二次函数的平移规律解答.(1)解:∵,∴抛物线C的开口向上.∵,∴抛物线C的对称轴为直线,顶点坐标为.(2)解:当时,y随x的增大而增大;∵当时,;当时,.∴函数值y的取值范围是.(3)解:抛物线对应的函数解析式为;抛物线对应的函数解析式为.【点睛】此题考查了将二次函数化为顶点式,二次函数的性质,利用函数的增减求出函数值的取值范围,二次函数的平移规律,熟记各知识点是解题的关键.3、 (1),,(2)【解析】【分析】(1)把代入函数解析式,可得,再利用因式分解法解方程可得的坐标,再求解函数的对称轴,可得的坐标;(2)先证明,利用相似三角形的性质求解,利用三角形的中位线定理再求解.再利用勾股定理求解,如图,当点、、三点共线时,的长最小,此时的周长最小.可得.再利用勾股定理列方程,解方程可得答案.(1)令 则, ∴,,∴对称轴为直线,∴.(2)在中, ,∴∠ODC=∠CBD, , ,. .∵轴,轴,∴.∵,∴.∴.在中,,∴,即.(负根舍去)∵点与点关于对称轴对称,∴.∴如图,当点、、三点共线时,的长最小,此时的周长最小.∴的周长的最小值为,∴的长最小值为,即.∵,∴.∴.∵,∴.【点睛】本题考查了二次函数与坐标轴的交点问题,二次函数图象的性质,相似三角形的性质与判定,勾股定理,根据对称性求最值,掌握二次函数图象的性质是解题的关键.4、 (1)5,4(2)见解析(3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3【解析】【分析】(1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;(2)描点、连线画出图象即可;(3)①根据图象即可求得;②根据图象即可求得.【小题1】解:把x=-2代入y=|x2-2x-3|,得y=5,∴m=5,把x=1代入y=|x2-2x-3|,得y=4,∴n=4,故答案为:5,4;【小题2】如图所示;【小题3】①函数的性质:图象具有对称性,对称轴是直线x=1;故答案为:图象具有对称性,对称轴是直线x=1;②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.【点睛】本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.5、m=3,对称轴为直线x=1【解析】【分析】先根据待定系数法求出二次函数的解析式,令y=0求解x即可求得m,进而可求得二次函数图象的对称轴.【详解】解:将(2,3)和(-1,0)代入y=﹣x2+bx+c中,得:,解得:,∴y=﹣x2+2x+3,令y=0,则﹣x2+2x+3=0,即x2﹣2x﹣3=0,解得:x1=-1,x2=3,∴该二次函数图象与x轴的交点坐标为A(-1,0)和B(3,0),∴m=3,该二次函数图象的对称轴为直线x=1.【点睛】本题考查待定系数法求二次函数解析式、二次函数图象与坐标轴的交点问题、二次函数图象的对称轴,熟练掌握待定系数法求函数解析式的步骤是解答的关键.
相关试卷
这是一份初中冀教版第30章 二次函数综合与测试练习题,共32页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。
这是一份数学九年级下册第30章 二次函数综合与测试练习,共36页。
这是一份2020-2021学年第30章 二次函数综合与测试习题,共28页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。
