![2022年强化训练冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12721017/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12721017/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12721017/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第30章 二次函数综合与测试测试题
展开
这是一份2021学年第30章 二次函数综合与测试测试题,共30页。试卷主要包含了二次函数y=a+bx+c,二次函数图像的顶点坐标是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )A. B. C. D.2、若二次函数与轴的一个交点为,则代数式的值为( )A. B. C. D.3、下列实际问题中的y与x之间的函数表达式是二次函数的是( )A.正方体集装箱的体积,棱长xmB.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.高为14m的圆柱形储油罐的体积,底面圆半径xm4、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是( )A.4 B.3 C.2 D.15、二次函数图像的顶点坐标是( )A.(0,-2) B.(-2,0) C.(2,0) D.(0,2)6、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )A. B. C. D.7、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )A. B. C. D.8、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )A.1 B.-1 C. D.无法确定9、二次函数的图象如图所示,那么下列说法正确的是( )A. B.C. D.10、若函数,则当函数y=15时,自变量的值是( )A. B.5 C.或5 D.5或第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线的对称轴是直线,则它的顶点坐标为______2、用“描点法”画二次函数的图象时,列了如下表格:……012…………6.5……当时,二次函数的函数值______3、已知二次函数,当时,函数的值是_________.4、对于二次函数与,其自变量与函数值的两组对应值如下表所示,根据二次函数图象的相关性质可知______,______x﹣1ccd 5、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)三、解答题(5小题,每小题10分,共计50分)1、某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).(1)请求出y(万件)与x(元/件)之间的函数关系式;①求出当4≤x≤8时的函数关系式;②求出当8<x≤28时的函数关系式.(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;(3)求出年利润的最大值.2、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.(1)求该抛物线的解析式;(2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;(3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.3、已知二次函数的图象经过点,对称轴是经过且平行于轴的直线.(1)求,的值,(2)如图,一次函数的图象经过点,与轴相交于点,与二次函数的图象相交于另一点,若点与点关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出时,的取值范围.4、已知一抛物线的顶点为(2,4),图象过点(1,3).(1)求抛物线的解析式;(2)动点P(x,5)能否在抛物线上?请说明理由;(3)若点A(a,y1),B(b,y2)都在抛物线上,且a<b<0,比较y1,y2的大小,并说明理由.5、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:x…0123…y…00…(1)求该二次函数的表达式;(2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______. -参考答案-一、单选题1、D【解析】【分析】由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.【详解】解:由已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0), 所以可设交点式y=(x-m)(x-n), 分别代入,, ∴ ∵0<m<n<3, ∴0<≤4 ,0<≤4 , ∵m<n, ∴ab不能取16 , ∴0<ab<16 ,故选D【点睛】本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.2、D【解析】【分析】把代入即可求出,则,进而可求出代数式的值.【详解】解:二次函数与轴的一个交点为,时,,,,故选:D.【点睛】本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.3、D【解析】【分析】根据题意,列出关系式,即可判断是否是二次函数.【详解】A.由题得:,不是二次函数,故此选项不符合题意;B.由题得:,不是二次函数,故此选项不符合题意;C.由题得:,不是二次函数,故此选项不符合题意;D.由题得:,是二次函数,故此选项符合题意.故选:D.【点睛】本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.4、B【解析】【分析】看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.【详解】∵抛物线与x轴有两个不同的交点,∴﹣4ac>0;故①正确;∵抛物线开口向下,与y轴交于正半轴,>0,∴a<0,b>0, c>0,∴abc<0;故②正确;∵,∴4a+b=0,故③正确;x= -2时,y=4a-2b+c,根据函数的增减性,得4a-2b+c<0;故④错误.故选B.【点睛】本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.5、C【解析】【分析】直接利用顶点式写出二次函数的顶点坐标即可得到正确的选项.【详解】解:抛物线的顶点坐标为,故选:C.【点睛】本题考查了二次函数的性质,解题的关键是了解二次函数的顶点式,难度不大.6、B【解析】【分析】由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.【详解】解:由题意知,平移后的抛物线解析式为将代入解析式得,与A中点坐标不同,故不符合要求;将代入解析式得,与B中点坐标相同,故符合要求;将代入解析式得,与C中点坐标不同,故不符合要求;将代入解析式得,与D中点坐标不同,故不符合要求;故选B.【点睛】本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.7、C【解析】【分析】根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可【详解】解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为, ∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,平移后的抛物线经过三点、、,故选C【点睛】本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.8、C【解析】【分析】分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;【详解】当a>0时,∵对称轴为x=,当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,∴4a+2-2=4.∴a=1,当a<0时,同理可得y有最大值为2; y有最小值为4a+2,∴2-(4a+2)=4,∴a=-1,综上,a的值为故选:C【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.9、D【解析】【分析】根据二次函数图象性质解题.【详解】解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;C.由图象可知,当x=1时,y=,故C不符合题意,D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,故选:D.【点睛】本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.10、D【解析】【分析】根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.【详解】解:当x<3时,令2x2-3=15,解得x=-3;当x≥3时,令3x=15,解得x=5;由上可得,x的值是-3或5,故选:D.【点睛】本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.二、填空题1、【解析】【分析】根据顶点坐标公式求得横坐标等于2,即可求得的值,进而求得顶点坐标.【详解】抛物线的对称轴是直线即抛物线解析式为当时,它的顶点坐标为【点睛】本题考查了二次函数的性质,待定系数法求解析式,求得的值是解题的关键.2、-4【解析】【分析】由表格得出抛物线的对称轴,根据二次函数的对称性解答可得.【详解】解:由表格可知当x=0和x=2时,y=-2.5,∴抛物线的对称轴为x=1,∴x=3和x=-1时的函数值相等,为-4,故答案为:-4.本题主要考查了二次函数图象上点的坐标特征,根据表格得出抛物线的对称轴是解题的关键.3、-1【解析】【分析】将x的值代入计算即可;【详解】解:当时==-1故答案为:-1【点睛】本题考查了二次函数的值,正确计算是解题的关键.4、 1 3【解析】【分析】根据二次函数的性质可知m=1,将d用含c的式子表示出来即可.【详解】解由二次函数的性质可得的对称轴为y轴,故由表可得,∴m=1;∵二次函数的对称轴为y轴,∴d=c+3,∴3,故答案为:1,3.【点睛】此题考查二次函数的对称性,熟练掌握二次函数的性质是解题的关键.5、6【解析】【分析】建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.【详解】建立平面直角坐标系如图:则抛物线顶点C坐标为(0,3),设抛物线解析式y=ax2+3,将A点坐标(﹣3,0)代入,可得:0=9a+3,解得:a=﹣,故抛物线解析式为y=﹣x2+3,当水面下降3米,通过抛物线在图上的观察可转化为:当y=﹣3时,对应的抛物线上两点之间的距离,也就是直线y=﹣3与抛物线相交的两点之间的距离,将y=﹣3代入抛物线解析式得出:﹣3=﹣x2+3,解得:x=±,所以水面宽度为米,故答案为:.【点睛】本题考查的是二次函数的应用,掌握二次函数的性质、正确建立平面直角坐标系是解题的关键.三、解答题1、 (1)①y=;②y=-x+28(2)(3)年利润最大为114元【解析】【分析】(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入计算即可;②当8<x≤28时,设y=k′x+b(k′≠0). 分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,计算即可;(2)分4≤x≤8、8<x≤28两种情况,利润w(万元)与x(元/件)之间的函数关系式;(3)分4≤x≤8、8<x≤28两种情况,分别求出w的最大值,进而求解;(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入,得k=4×40=160,∴y=②当8<x≤28时,设y=k′x+b(k′≠0). 分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,得解得∴y=-x +28(2)当4≤x≤8时,w=当8<x≤28时,w=(x-4)y=(x-4)(-x+28)=-x2+32x-112=-(x-16)2+114综上可知,w(万元)与x(元/件)之间的函数关系式为(3)当4≤x≤8时,∵-640<0,∴w随x增大而增大,∴当x=8时,w有最大值,为 当8<x≤28时,∵-1<0∴当x=16时,w有最大值,为114∵80<114∴当每件的销售价格定为16元时,年利润最大为114元【点睛】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.2、 (1)(2)矩形PEDF周长的最大值为,此时点(3)或【解析】【分析】(1)将点,点,代入解析式,待定系数法求解析式即可;(2)根据题意转化为求最长时点的坐标,进而求得周长即可;(3)将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,进而得到平行后的新的抛物线的解析式,根据题意分情况讨论,根据的两个顶点恰好落在新抛物线上时,根据旋转可得若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,进而分类讨论,根据直线与抛物线交点问题,一元二次方程根与系数的关系求解即可.(1)解:将点,点,代入解析式,得解得抛物线的解析式为:(2)四边形是矩形即设,则则矩形PEDF周长为,当取得最大值时,矩形PEDF周长的最大设直线的解析式为,将点代入得,则解得直线的解析式为设,则即当时,取得最大值,最大值为此时矩形PEDF周长为当时,即(3)由(2)可知,则,过点作,则,将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,则新抛物线解析式为:即将绕点Q顺时针方向旋转90°后得到,轴,旋转90°后,则轴则轴,若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,轴设直线为①当在抛物线上时,如图,设点,的横坐标分别为,则则为的两根即方程,则即解得则解得②当在抛物线上时,如图,设点,的横坐标分别为,,则,中,直线的解析式为设直线的解析式为则为的两根即,则即解得直线的解析式为则解得当时,综上所述或【点睛】本题考查了待定系数法求二次函数解析式,解直角三角形,旋转的性质,矩形的性质,含30度角的直角三角形的性质,勾股定理,一次函数的平移问题,二次函数的平移问题,一元二次方程根与系数的关系,二次函数求函数值的问题,熟练掌握以上知识并正确的计算是解题的关键.3、 (1)(2)(3)或4、 (1)(2)不在,见解析(3)y1<y2,见解析【解析】【分析】(1)根据已知条件设抛物线的解析式为顶点式,把点(1,3)的坐标代入所设的解析式中即可求得a,从而可求得函数解析式;(2)把点P的纵坐标代入抛物线的解析式中,得到关于x的二元一次方程,若方程有解,则点P在抛物线,否则不在抛物线上;(3)抛物线的对称轴为直线x=2,根据抛物线的增减性质即可比较大小.(1)设抛物线的解析式为把点(1,3)的坐标代入中,得a+4=3∴ 即抛物线的解析式为;(2)动点P(x,5)不在抛物线上理由如下:在中,当y=5时,得即此方程无解故点P不在抛物线上;(3)y1<y2理由如下:抛物线的对称轴为直线x=2∵二次项系数−1<0,且 ∴函数值随自变量的增大而增大即y1<y2【点睛】本题考查了待定系数法求二次函数的解析式,二次函数与一元二次方程的关系,二次函数的图象与性质等知识,熟练掌握这些知识是关键,属于二次函数的基础题目.5、 (1)二次函数的表达式为: ;(2).【解析】【分析】(1)观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,再选一组值代入即可求出a值,解析式即可确定;(2)先根据顶点坐标求出关于y轴对称的顶点坐标,然后设抛物线解析式为,结合表中数据可得函数图象经过,代入求解即可确定抛物线解析式.(1)解:观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,把代入得,,∴,∴,即 ;(2)解:抛物线的顶点是,关于y轴的对称点,开口方向与原抛物线相同, 设二次函数的表达式为,在y轴上且在函数图象上,将其代入函数表达式为:,解得:,∴关于y轴对称的图象所对应的函数表达式为,故答案为:.【点睛】本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.
相关试卷
这是一份数学九年级下册第30章 二次函数综合与测试精品当堂达标检测题,共34页。试卷主要包含了二次函数y=a+bx+c,已知平面直角坐标系中有点A等内容,欢迎下载使用。
这是一份数学九年级下册第30章 二次函数综合与测试一课一练,共29页。试卷主要包含了抛物线的对称轴是,同一直角坐标系中,函数和等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试复习练习题,共29页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)