搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练冀教版九年级数学下册第三十章二次函数综合练习练习题(无超纲)

    2022年强化训练冀教版九年级数学下册第三十章二次函数综合练习练习题(无超纲)第1页
    2022年强化训练冀教版九年级数学下册第三十章二次函数综合练习练习题(无超纲)第2页
    2022年强化训练冀教版九年级数学下册第三十章二次函数综合练习练习题(无超纲)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试课堂检测

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课堂检测,共26页。试卷主要包含了若点A等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
    A. B. C. D.
    2、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为(  )
    A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
    3、已知,是抛物线上的点,且,下列命题正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    4、如图,直线与y轴交于点A,与直线交于点B,若抛物线的顶点在直线上移动,且与线段、都有公共点,则h的取值范围是( )

    A. B. C. D.
    5、二次函数的图象如图所示,那么下列说法正确的是( )

    A. B.
    C. D.
    6、已知二次函数的图象经过,,则b的值为( )
    A.2 B. C.4 D.
    7、二次函数的自变量与函数值的部分对应值如下表:


    -3
    -2
    -1
    0
    1



    -11
    -3
    1
    1
    -3

    对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
    A.①② B.③④ C.①③ D.①②④
    8、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
    A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
    9、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
    A. B. C. D.
    10、一次函数与二次函数的图象交点(  )
    A.只有一个 B.恰好有两个
    C.可以有一个,也可以有两个 D.无交点
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
    2、定义:在平面直角坐标系中,若点的横、纵坐标都为整数,则把这样的点叫做“整点”.如:A(1,0),B(﹣3,2)都是“整点”,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点,若该抛物线在P,Q之间的部分与线段PQ所围的区域(不包括边界)恰有3个整点,则a的取值范围是_____.
    3、二次函数y=ax2+bx+c的部分对应值列表如下:
    x

    ﹣3
    0
    1
    3
    5

    y

    7
    ﹣8
    ﹣9
    ﹣5
    7

    则一元二次方程a(2x+1)2+b(2x+1)+c=﹣5的解为 _____.
    4、抛物线y=(x﹣1)2+3的顶点坐标为___.
    5、某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留宽的门,所有围栏的总长(不含门)为,若要使得建成的饲养室面积最大,则利用墙体的长度为______.

    三、解答题(5小题,每小题10分,共计50分)
    1、已知二次函数的图象经过点.
    (1)求二次函数的表达式;
    (2)求二次函数的图象与轴的交点坐标.
    2、己知二次函数.
    (1)若此二次函数图象的对称轴为,求它的解析式;
    (2)当时,y随x增大而减小,求k的取值范围.
    3、高邮双黄鸭蛋已入选全世界最值得品尝百种味道,某专卖店根据以往销售数据发现:高邮双黄鸭蛋每天销售数量y(盒)与销售单价x(元/盒)的关系满足一次函数,每盒高邮双黄鸭蛋各项成本合计为40元/盒.
    (1)若该专卖店某天获利800元,求销售单价x(元/盒)的值;
    (2)当销售单价x定为多少元/盒时,该专卖店每天获利最大?最大利润为多少?
    (3)若该专卖店决定每销售一盒就捐出元给当地学校作为贫困学生的助学金,当每天的销售量不低于25盒时,为了确保该店每天扣除捐出后的利润随着销售量的减小而增大,则m的取值范围为______.
    4、抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点(点A在点B的左侧),且OA=OB,与y轴交于点C.
    (1)求证:b=0;
    (2)点P是第二象限内抛物线上的一个动点,AP与y轴交于点D.连接BP,过点A作AQ∥BP,与抛物线交于点Q,且AQ与y轴交于点E.
    ①当a=﹣1时,求Q,P两点横坐标的差;(用含有c的式子来表示)
    ②求的值.
    5、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.
    (1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4

    y

    m
    0
    3
    n
    3
    0
    5

    其中,m=   ,n=   ;
    (2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;
    (3)观察函数图像:
    ①写出该函数的一条性质    ;
    ②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2)


    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
    【详解】
    解:由已知二次项系数等于1的一个二次函数,
    其图象与x轴交于两点(m,0),(n,0),
    所以可设交点式y=(x-m)(x-n),
    分别代入,,



    ∵0<m<n<3,
    ∴0<≤4 ,0<≤4 ,
    ∵m<n,
    ∴ab不能取16 ,
    ∴0<ab<16 ,
    故选D
    【点睛】
    本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
    2、B
    【解析】
    【分析】
    根据二次函数图象左加右减,上加下减的平移规律进行求解.
    【详解】
    解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
    再向上平移5个单位长度,得:y=(x﹣3)2+5,
    故选:B.
    【点睛】
    本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
    3、C
    【解析】
    【分析】
    先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
    【详解】
    解:抛物线的对称轴为:直线,
    ∵,
    当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
    4、B
    【解析】
    【分析】
    将与联立可求得点B的坐标,然后由抛物线的顶点在直线可求得k=−h,于是可得到抛物线的解析式为y=(x−h)2−h,由图形可知当抛物线经过点B和点C时抛物线与线段AB、BO均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.
    【详解】
    解:∵将与联立得:,
    解得:.
    ∴点B的坐标为(−2,1),
    由抛物线的解析式可知抛物线的顶点坐标为(h,k),
    ∵将x=h,y=k,代入得y=−x得:−h=k,解得k=−h,
    ∴抛物线的解析式为y=(x−h)2−h,
    如图1所示:当抛物线经过点C时,

    将C(0,0)代入y=(x−h)2−h得:h2−h=0,解得:h1=0(舍去),h2=;
    如图2所示:当抛物线经过点B时,

    将B(−2,1)代入y=(x−h)2−h得:(−2−h)2−h=1,整理得:2h2+7h+6=0,解得:h1=−2,h2=−(舍去).
    综上所述,h的范围是−2≤h≤,即−2≤h≤
    故选:B.
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了一次函数的交点与一元二次方程组的关系、待定系数法求二次函数的解析式,通过平移抛物线探究出抛物线与线段AB、BO均有交点时抛物线经过的“临界点”为点B和点O是解题解题的关键.
    5、D
    【解析】
    【分析】
    根据二次函数图象性质解题.
    【详解】
    解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
    B.二次函数图象与y轴交于负半轴,即c0,
    ∴其图象开口向上,
    ∵时,y随x 的增大而减小,
    ∴对称轴位于x=1的右侧或对称轴为直线x=1,
    ∴,
    解得:.
    【点睛】
    此题考查的是二次函数的图象与系数的关系,掌握对称轴的概念、二次函数的图象的性质是解决此题关键.
    3、 (1)60或80
    (2)当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元
    (3)
    【解析】
    【分析】
    (1)利用利润等于每天的销售额减去总成本,列出方程,即可求解;
    (2)设该专卖店每天获利 元,根据题意,列出函数关系式,再根据二次函数的性质,即可求解;
    (3)设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意列出关于的函数关系式,再根据二次函数的性质,即可求解.
    (1)
    解:根据题意得:

    解得: ,
    答:若该专卖店某天获利800元,销售单价为60或80元/盒;
    (2)
    解:设该专卖店每天获利 元,根据题意得:

    ∴当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元;
    (3)
    解:设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意得:

    ∵ ,
    ∴该图象开口向下,对称轴为: ,
    根据题意得:当 时, 随 的减小而增大,
    ∴ ,解得: ,
    ∵ ,
    ∴m的取值范围为 .
    【点睛】
    本题主要考查了一元二次方程的应用,二次函数的应用,明确题意,准确得到等量关系是解题的关键.
    4、 (1)见解析
    (2)①2;②2.
    【解析】
    【分析】
    (1)利用根与系数的关系即可证明b=0;
    (2)①设出P点坐标,然后令c=t²,然后表示出A、B的坐标,先求出直线BP的解析式,即可得到直线AQ的解析式,然后联立抛物线与直线AQ解析式,求出Q点横坐标,即可求解;②同①的方法,令a=-s²,c=t²,设出P点坐标,分别求出D、E的坐标,代入计算即可求解.
    (1)
    解:设方程ax2+bx+c=0两根为x1,x2,
    ∵抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点,且OA=OB,
    ∴x1=-x2,即x1+x2=0,
    ∵x1+x2=-,
    ∴-=0,
    ∵a<0,
    ∴b=0;
    (2)
    解:①当a=﹣1时,令c=t2,抛物线的解析式为y=-x2+t2,
    解方程-x2+t2=0,得:x1=t,x2=-t,
    ∴A(-t,0),B(t,0),
    设点P的坐标为(p,-p2+ t2),
    设直线PB的解析式为y=kx+m,
    ∴,解得:,
    ∴直线PB的解析式为y=x+,
    ∵AQ∥BP,
    设直线AQ的解析式为y=x+n,
    把A(-t,0)代入得:n=
    ∴直线AQ的解析式为y=,
    联立y=和y=-x2+ t2得:,
    整理得:,
    解得x1=-t,x2=p+2t,
    ∴点Q的横坐标为p+2t,
    ∴Q,P两点横坐标的差为p+2t-p=2t=2;
    ②令c=t2,a=-s²,抛物线的解析式为y=-s²x2+t2,
    解方程-s²x2+t2=0,得:x1=,x2=-,
    ∴A(-,0),B(,0),C(0,t2),
    设点P的坐标为(p,-s²p2+ t2),
    同理求得直线PB的解析式为y=x+,
    直线AQ的解析式为y=,
    令x=0,则y=,
    即点E的坐标为(0,),
    同理求得直线AP的解析式为y=,
    令x=0,则y=,
    即点D的坐标为(0,),
    ∴OD=,OE=,OC=,
    ∴.

    【点睛】
    本题是二次函数综合题,考查了待定系数法求函数解析式,解一元二次方程,一元二次方程的根与系数的关系等知识点,解答本题的关键是明确题意,找出所求问题需要的条件,画出相应的图形,利用数形结合的思想解答.
    5、 (1)5,4
    (2)见解析
    (3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3
    【解析】
    【分析】
    (1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;
    (2)描点、连线画出图象即可;
    (3)①根据图象即可求得;
    ②根据图象即可求得.
    【小题1】
    解:把x=-2代入y=|x2-2x-3|,得y=5,
    ∴m=5,
    把x=1代入y=|x2-2x-3|,得y=4,
    ∴n=4,
    故答案为:5,4;
    【小题2】
    如图所示;

    【小题3】
    ①函数的性质:图象具有对称性,对称轴是直线x=1;
    故答案为:图象具有对称性,对称轴是直线x=1;
    ②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.
    【点睛】
    本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.

    相关试卷

    九年级下册第30章 二次函数综合与测试同步练习题:

    这是一份九年级下册第30章 二次函数综合与测试同步练习题,共31页。试卷主要包含了若二次函数y=ax2+bx+c,已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试课时练习:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时练习,共33页。试卷主要包含了下列函数中,二次函数是,抛物线,,的图象开口最大的是等内容,欢迎下载使用。

    2021学年第30章 二次函数综合与测试习题:

    这是一份2021学年第30章 二次函数综合与测试习题,共34页。试卷主要包含了下列函数中,随的增大而减小的是,二次函数y=ax2﹣4ax+c,抛物线的顶点为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map