冀教版九年级下册第30章 二次函数综合与测试当堂检测题
展开九年级数学下册第三十章二次函数定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数的最大值是( )
A. B. C.1 D.2
2、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
A.2个 B.3个 C.4个 D.5个
3、下列函数中,随的增大而减小的是( )
A. B.
C. D.
4、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
5、已知二次函数y=ax2+4x+1的图象与x轴有公共点,则a的取值范围是( )
A.a<4 B.a≤4 C.a<4且a≠0 D.a≤4且a≠0
6、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
7、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
A.-2 B.-1 C.4 D.7
8、一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
9、已知二次函数的图象上有三点,,,则、、的大小关系为( )
A. B. C. D.
10、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式为 ____________.
2、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.
3、将二次函数的图象先向右平移2个单位,再向下平移2个单位,最终所得图象的函数表达式为______.
4、二次函数的图像上横坐标与纵坐标相等的点的坐标为__________.
5、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中,抛物线交轴于点,,过点的直线交抛物线于点.
(1)求该抛物线的函数表达式;
(2)若点是直线下方抛物线上的一个动点(不与点,重合),求面积的最大值;
(3)若点在抛物线上,点在直线上.试探究:是否存在点,,使得,同时成立?若存在,请直接写出点的坐标;若不存在,请说明理由.
2、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;
(3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.
3、如图,在平面直角坐标系中,已知点的坐标为,且,抛物线()图象经过,,三点.
(1)求抛物线的解析式;
(2)是抛物线对称轴上的一点,当的值最小时,求点坐标;
(3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.
4、高邮双黄鸭蛋已入选全世界最值得品尝百种味道,某专卖店根据以往销售数据发现:高邮双黄鸭蛋每天销售数量y(盒)与销售单价x(元/盒)的关系满足一次函数,每盒高邮双黄鸭蛋各项成本合计为40元/盒.
(1)若该专卖店某天获利800元,求销售单价x(元/盒)的值;
(2)当销售单价x定为多少元/盒时,该专卖店每天获利最大?最大利润为多少?
(3)若该专卖店决定每销售一盒就捐出元给当地学校作为贫困学生的助学金,当每天的销售量不低于25盒时,为了确保该店每天扣除捐出后的利润随着销售量的减小而增大,则m的取值范围为______.
5、二次函数y=ax2+bx+c(a≠0)的图象如图所示,求此二次函数表达式.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
【详解】
解:由图象的性质可知,在直线处取得最大值
∴将代入中得
∴最大值为2
故答案为:2.
【点睛】
本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
2、C
【解析】
【分析】
根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
【详解】
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
∵抛物线的对称轴在y轴的右边,
∴b<0,
∴,
故①正确;
∵二次函数的图像与x轴交于点,
∴a-b+c=0,
根据对称轴的左侧,y随x的增大而减小,
当x=-2时,y>0即,
故②正确;
∵,
∴b= -2a,
∴3a+c=0,
∴2a+c=2a-3a= -a<0,
故③正确;
根据题意,得,
∴,
解得,
故④错误;
∵=0,
∴,
∴y=向上平移1个单位,得y=+1,
∴为方程的两个根,且且.
故⑤正确;
故选C.
【点睛】
本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
3、C
【解析】
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
4、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
C.由图象可知,当x=1时,y=,故C不符合题意,
D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
故选:D.
【点睛】
本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
5、D
【解析】
【分析】
由二次函数的定义得a≠0,再由二次函数y=ax2+4x+1的图象与x轴有公共点得到Δ≥0,解不等式即可.
【详解】
解:∵二次函数y=ax2+4x+1的图象与x轴有公共点,
∴Δ=42﹣4a×1≥0,且a≠0,
解得:a≤4,且a≠0.
故选:D.
【点睛】
本题考查二次函数的图象与x轴的交点,关键是Δ=b2−4ac决定抛物线与x轴交点的个数.
6、B
【解析】
【分析】
根据二次函数的图象与性质逐项分析即可.
【详解】
A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
C、当a<0时, ,其顶点坐标为,当a=−1时,顶点坐标为(1,0 ),在x轴上,故命题错误;
D、由于,抛物线的对称轴为直线x=1,当a>0且x≥1时,y随x增大而增大,故命题错误.
故选:B
【点睛】
本题考查了二次函数的图象与性质、二次函数与一元二次方程的关系,熟练掌握这些知识是解题的关键.
7、C
【解析】
【分析】
根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
【详解】
解:∵二次函数,当时,x的取值范围是,
∴,二次函数开口向下
解得,对称轴为
当时,,
经过原点,
根据函数图象可知,当,,
根据对称性可得时,
二次函数图象经过点,
或
不可能是4
故选C
【点睛】
本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
8、C
【解析】
【分析】
逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
【详解】
A、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,A不可能;
B、∵二次函数图象开口向上,对称轴在y轴右侧,
∴a>0,b<0,
∴一次函数图象应该过第一、三、四象限,B不可能;
C、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,C可能;
D、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,D不可能.
故选:C.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据a、b的正负确定一次函数图象经过的象限.
9、A
【解析】
【分析】
分别求出、、的大小,再进行判断即可.
【详解】
解:
A、故选项正确,符合题意;
B、故选项错误,不符合题意;
C、故选项错误,不符合题意;
D、故选项错误,不符合题意.
故选:A.
【点睛】
此题考查了二次函数的大小比较问题,解题的关键是掌握二次函数的性质、利用代入法求出、、的大小.
10、C
【解析】
【分析】
根据平移的规律:左加右减,上加下减可得函数解析式.
【详解】
解:因为y=x2-2x+3=(x-1)2+2.
所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.
故选:C.
【点睛】
本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.
二、填空题
1、y=x2-4x+3
【解析】
【分析】
过点C作CH⊥AB于点H,然后利用垂径定理求出CH、AH和BH的长度,进而得到点A和点B的坐标,再将A、B的坐标代入函数解析式求得b与c,最后求得二次函数的解析式.
【详解】
解:过点C作CH⊥AB于点H,则AH=BH,
∵C(2,),
∴CH=,
∵半径为2,
∴AH=BH==1,
∵A(1,0),B(3,0),
∴二次函数的解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3,
故答案为:y=x2-4x+3.
【点睛】
本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C作CH⊥AB于点H,利用垂径定理求出点A和点B的坐标.
2、-1
【解析】
【分析】
将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.
【详解】
解:
=
=
∴抛物线顶点坐标为(1,-2),在第四象限,
又抛物线与轴相交于A,两点.
∴抛物线开口向上,即
设为A,B两点的横坐标,
∴
∵线段的长不小于2,
∴
∴
∴
∴
∴
解得,
设
当时,有最小值,最小值为:
故答案为:-1
【点睛】
本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.
3、y=(x﹣2)2﹣2.
【解析】
【分析】
根据函数图象向右平移自变量减,向下平移常数项减,可得答案.
【详解】
解;将二次函数y=x2的图象向右平移2个单位,再向下平移2个单位后,所得图象的函数表达式是y=(x﹣2)2﹣2,
故答案为:y=(x﹣2)2﹣2.
【点睛】
本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减自变量,上加下减常数项.
4、、
【解析】
【分析】
设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,求出的值即可.
【详解】
解:设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,即,
解得.
故符合条件的点的坐标是:、.
故答案为:、.
【点睛】
本题考查的是二次函数图象上点的坐标特点,解题的关键是掌握即二次函数图象上各点的坐标一定适合此函数的解析式.
5、<
【解析】
【分析】
找到二次函数对称轴,根据二次函数的增减性即可得出结论.
【详解】
解:∵y=﹣2(x﹣1)2+3,
∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
∴在x<1时,y随x的增大而增大,
∵x1<x2<0,
∴y1<y2.
故答案为:<.
【点睛】
本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
三、解答题
1、 (1)
(2)
(3)存在,.
【解析】
【分析】
(1)利用待定系数法即可求得答案;
(2)如图1,过点P作PD∥y轴,交x轴于点D,交BC于点E,作CF⊥PD于点F,连接PB,PC,设点P(m,m2-2m-3),则点E (m,,可得出PE=,再通过解方程组求出点C的坐标为,利用三角形面积公式和二次函数性质即可得出答案;
(3)设M(t,t2-2t-3),N(n,,作MG⊥y轴于点G,NH⊥x轴于H,证明△OGM≌△OHN(AAS),得出GM=NH,OG=OH,建立方程组求解即可.
(1)
将点,代入中,得:
解得,
∴该抛物线表达式为:
(2)
如图1,过点P作PD//y轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,
设点,则点,
∴
联立方程组
解得,,
∵点B的坐标为(3,0)
∴点C的坐标为
∴
∴
(其中)
∵
∴这个二次函数有最大值,
∴当时,的最大值为;
(3)
存在,
①如图②,
设,N(n,,
作MG⊥y轴于点G,NH⊥x轴于H,
∴∠OGM=∠OHN=90°,
∵OM=ON,∠MON=90°,∠GOH=90°,
∴∠MOG=∠NOH,
在△OGM与△OHN中,
,
∴△OGM≌△OHN(AAS),
∴GM=NH,OG=OH,
∴,
解得:,,
∴N1(3,0),N2,
②如图3,设M(t,t2﹣2t﹣3),N(n,,
作MG⊥x轴于点G,NH⊥x轴于H,
∴∠OGM=∠OHN=90°,
∵OM=ON,∠MON=90°,∠GOH=90°,
∴∠MOG=∠NOH,
在△OGM与△OHN中,
,
∴△OGM≌△OHN(AAS),
∴GM=NH,OG=OH,
∴,
解得:,
∴;
综上所述,点N的坐标为.
【点睛】
本题考查了待定系数法求函数的解析式、二次函数的图象与性质、几何图形的旋转、全等三角形的判定与性质及一元二次方程等知识点,运用数形结合思想、分类讨论思想及熟练掌握全等三角形判定和性质及二次函数性质是解题的关键.
2、 (1)
(2)矩形PEDF周长的最大值为,此时点
(3)或
【解析】
【分析】
(1)将点,点,代入解析式,待定系数法求解析式即可;
(2)根据题意转化为求最长时点的坐标,进而求得周长即可;
(3)将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,进而得到平行后的新的抛物线的解析式,根据题意分情况讨论,根据的两个顶点恰好落在新抛物线上时,根据旋转可得若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,进而分类讨论,根据直线与抛物线交点问题,一元二次方程根与系数的关系求解即可.
(1)
解:将点,点,代入解析式,得
解得
抛物线的解析式为:
(2)
四边形是矩形
即
设,则
则矩形PEDF周长为,
当取得最大值时,矩形PEDF周长的最大
设直线的解析式为,将点代入得,
则
解得
直线的解析式为
设,则
即
当时,取得最大值,最大值为
此时矩形PEDF周长为
当时,
即
(3)
由(2)可知,则,
过点作,则,
将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,
则新抛物线解析式为:
即
将绕点Q顺时针方向旋转90°后得到,
轴,
旋转90°后,则轴
则轴,
若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,
轴
设直线为
①当在抛物线上时,如图,
设点,的横坐标分别为,
则
则为的两根
即方程
,
则
即
解得
则
解得
②当在抛物线上时,如图,
设点,的横坐标分别为,
,
则
,
中,
直线的解析式为
设直线的解析式为
则为的两根
即
,
则
即
解得
直线的解析式为
则
解得
当时,
综上所述或
【点睛】
本题考查了待定系数法求二次函数解析式,解直角三角形,旋转的性质,矩形的性质,含30度角的直角三角形的性质,勾股定理,一次函数的平移问题,二次函数的平移问题,一元二次方程根与系数的关系,二次函数求函数值的问题,熟练掌握以上知识并正确的计算是解题的关键.
3、 (1);
(2)();
(3)点P(2,-6),PD最大值为
【解析】
【分析】
(1)根据点B的坐标,得出OB的长,进而根据即可得到OA、OC的长,利用待定系数法求出函数解析式;
(2)利用配方法求出抛物线的对称轴,连接AC,交对称轴于一点即为点M,此时的值最小,求出直线AC的解析式,当时求出y的值即可得到点M的坐标;
(3)过点P作PH平行于y轴,交AC于点H,根据等腰直角三角形的性质求出∠OAC=∠OCA=45°,根据平行线的性质求出∠PHD=∠OCA=45°,设点P(x,),则点H(x,x-4),根据正弦函数定义得到,根据函数的性质得解问题.
(1)
解:∵点的坐标为,
∴OB=1,
∵,
∴OA=OC=4,
∴点A的坐标为(4,0),点C的坐标为(0,-4),
将点A、B、C的坐标代入中,得
,解得,
∴抛物线的解析式为;
(2)
解:∵,
∴抛物线的对称轴为直线,
连接AC,交对称轴于一点即为点M,此时的值最小,
设直线AC的解析式为,
∴,解得,
∴直线AC的解析式为y=x-4,
当时,,
∴点M的坐标为();
(3)
解:过点P作PH平行于y轴,交AC于点H,
∵OA=OC,
∴∠OAC=∠OCA=45°,
∴∠PHD=∠OCA=45°,
设点P(x,),则点H(x,x-4),
∴,
∵,
∴PD有最大值,当x=2时,PD最大值为,
此时点P(2,-6).
.
【点睛】
此题考查了待定系数法求抛物线解析式,抛物线的对称轴,化一般式为顶点式,最短路径问题,二次函数的性质,锐角三角函数,正确掌握抛物线的各知识点是解题的关键,这是一道二次函数与一次函数的综合题.
4、 (1)60或80
(2)当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元
(3)
【解析】
【分析】
(1)利用利润等于每天的销售额减去总成本,列出方程,即可求解;
(2)设该专卖店每天获利 元,根据题意,列出函数关系式,再根据二次函数的性质,即可求解;
(3)设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意列出关于的函数关系式,再根据二次函数的性质,即可求解.
(1)
解:根据题意得:
,
解得: ,
答:若该专卖店某天获利800元,销售单价为60或80元/盒;
(2)
解:设该专卖店每天获利 元,根据题意得:
,
∴当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元;
(3)
解:设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意得:
,
∵ ,
∴该图象开口向下,对称轴为: ,
根据题意得:当 时, 随 的减小而增大,
∴ ,解得: ,
∵ ,
∴m的取值范围为 .
【点睛】
本题主要考查了一元二次方程的应用,二次函数的应用,明确题意,准确得到等量关系是解题的关键.
5、y=﹣x2﹣2x+3
【解析】
【分析】
根据图象确定经过抛物线的三个点,设二次函数解析式为y=a(x+3)(x﹣1),再代入(0,3)利用待定系数法计算即可.
【详解】
解:由图象可知,抛物线经过(﹣3,0)、(1,0)、(0,3),
设抛物线的解析式为:y=a(x+3)(x﹣1),
代入点(0,3),
则3=a(0+3)(0﹣1),
解得:a=﹣1,
则抛物线的解析式为:y=﹣(x+3)(x﹣1),
整理得到:y=﹣x2﹣2x+3.
【点睛】
本题考查了二次函数解析式的求法,属于基础题,计算过程中细心即可.
2021学年第30章 二次函数综合与测试优秀课时训练: 这是一份2021学年第30章 二次函数综合与测试优秀课时训练,共28页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
数学九年级下册第30章 二次函数综合与测试优秀复习练习题: 这是一份数学九年级下册第30章 二次函数综合与测试优秀复习练习题,共24页。试卷主要包含了抛物线的顶点坐标为,若点A等内容,欢迎下载使用。
数学九年级下册第30章 二次函数综合与测试练习: 这是一份数学九年级下册第30章 二次函数综合与测试练习,共36页。