|试卷下载
搜索
    上传资料 赚现金
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数专项测评试卷
    立即下载
    加入资料篮
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数专项测评试卷01
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数专项测评试卷02
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数专项测评试卷03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试课时作业

    展开
    这是一份冀教版九年级下册第30章 二次函数综合与测试课时作业,共31页。

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.
    A.1个B.2个C.3个D.4个
    2、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为( )
    A.y=2(x﹣2)2﹣1B.y=2(x+2)2﹣1C.y=2x2﹣3D.y=2x2+1
    3、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0D.若y3y4<0,则y1y2<0
    4、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )
    A.B.y≤2C.y<2D.y≤3
    5、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )
    A.2B.3C.4D.5
    6、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
    A.B.
    C.D.
    7、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
    A.2个B.3个C.4个D.5个
    8、在平面直角坐标系中,将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是( )
    A.(4,2)B.(﹣2,2)C.(4,﹣2)D.(﹣2,﹣2)
    9、二次函数的图象如图所示,则下列结论正确的是( )
    A.,,B.,,C.,,D.,,
    10、根据表格对应值:
    判断关于x的方程ax2+bx+c=2的一个解x的范围是( )
    A.1.1<x<1.2B.1.2<x<1.3C.1.3<x<1.4D.无法判定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、当x≥m时,两个函数y1=﹣(x﹣4)2+2和y2=﹣(x﹣3)2+1的函数值都随着x的增大而减小,则m的最小值为_____.
    2、将函数的图象向______平移______个单位长度,再向______平移______个单位长度,可以得到函数的图象.
    3、已知二次函数的图象经过点,那么a的值为_____.
    4、抛物线与x轴的两个交点之间的距离为4,则t的值是______.
    5、如图,抛物线与直线的交点为,.当时,x的取值范围______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图, 在平面直角坐标系 中, 直线 与 牰交于点 , 与 轴交于点 . 点C为拋物线 的顶点.
    (1)用含 的代数式表示顶点 的坐标:
    (2)当顶点 在 内部, 且 时,求抛物线的表达式:
    (3)如果将抛物线向右平移一个单位,再向下平移 个单位后,平移后的抛物线的顶 点 仍在 内, 求 的取值范围.
    2、如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接BC,点P是位于x轴上方抛物线上的一个动点,过P作PE⊥x轴,垂足为点E.
    (1)求抛物线的函数表达式;
    (2)是否存在点P,使得以A、P、E为顶点的三角形与△BOC相似?若存在,求出点P的坐标,说明理由;
    (3)是否存在点P,使得四边形ABCP的面积最大?若存在,请求出点P的坐标,请说明理由.
    3、已知,如图,直线分别与轴、轴交于点、,抛物线经过点和点,其对称轴与直线交于点.
    (1)求二次函数的表达式;
    (2)若抛物线(其中)与抛物线的对称轴交于点.与直线交于点,过点作轴交抛物线的对称轴左侧部分于点.
    ①若点和点重合,求的值;
    ②若点在点的下方,求、的长(用含有的代数式表示);
    ③在②的条件下,设的长度为个单位,的长度为个单位,若.直接写出的范围.
    4、如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).
    (1)求此抛物线的解析式;
    (2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;
    (3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.
    5、高邮双黄鸭蛋已入选全世界最值得品尝百种味道,某专卖店根据以往销售数据发现:高邮双黄鸭蛋每天销售数量y(盒)与销售单价x(元/盒)的关系满足一次函数,每盒高邮双黄鸭蛋各项成本合计为40元/盒.
    (1)若该专卖店某天获利800元,求销售单价x(元/盒)的值;
    (2)当销售单价x定为多少元/盒时,该专卖店每天获利最大?最大利润为多少?
    (3)若该专卖店决定每销售一盒就捐出元给当地学校作为贫困学生的助学金,当每天的销售量不低于25盒时,为了确保该店每天扣除捐出后的利润随着销售量的减小而增大,则m的取值范围为______.
    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.
    【详解】
    解:∵抛物线的对称轴为x=-1,
    所以B(1,0)关于直线x=-1的对称点为A(-3,0),
    ∴AB=1-(-3)=4,故①正确;
    由图象可知:抛物线与x轴有两个交点,
    ∴Δ=b2-4ac>0,故②正确;
    由图象可知:抛物线开口向上,
    ∴a>0,
    由对称轴可知:−<0,
    ∴b>0,故③正确;
    当x=-1时,y=a-b+c<0,故④正确;
    所以,正确的结论有4个,
    故选:D.
    【点睛】
    本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质.
    2、D
    【解析】
    【分析】
    由题意知平移后的函数关系式为,进行整理即可.
    【详解】
    解:由题意知平移后的函数关系式为:,
    故选D.
    【点睛】
    本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.
    3、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    4、A
    【解析】
    【分析】
    根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案
    【详解】
    解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,
    ∴另一交点为
    设抛物线解析式为,将点代入得
    解得
    抛物线解析式为
    则顶点坐标为
    当x>0时,函数值y的取值范围是
    故选A
    【点睛】
    本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.
    5、B
    【解析】
    【分析】
    由抛物线开口方向、对称轴以及与y轴的交点即可判断①;根据抛物线与x轴的交点即可判断②;根据函数的对称性和增减性即可判断③;根据抛物线的对称轴为直线x=1,得出b=-2a,由x=-1时,y=a-b+c<0,即可得出3a+c<0,即可判断④;根据二次函数的性质即可判断⑤.
    【详解】
    解:∵对称轴是直线x=1,且经过点(0,2),
    ∴左同右异ab<0,c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴b2-4ac>0,所以②正确;
    ∵抛物线对称轴是直线x=1,
    ∴x=-1与x=3的函数值一样,x=0与x=2的函数值都是2,
    ∵抛物线开口向下,对称轴为x=1,
    ∴当x<1时,y随x的增大而增大,
    ∴9a+3b+c<2,所以③正确;
    ∵对称轴为x=1,
    ∴=1,即b=-2a,
    ∵x=-1时,y=a-b+c>0,
    ∴3a+c>0,所以④错误;
    ∵抛物线开口向下,对称轴为x=1,
    ∴当x<1时,y随x的增大而增大,
    ∵点(4,y3)关于直线x=1的对称点为(-2,y3),且,
    ∴y1<y3<y2,所以⑤不正确;
    故选:B.
    【点睛】
    本题考查二次函数的图象和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及抛物线与x轴的交点与系数a、b、c的关系是正确判断的前提.
    6、D
    【解析】
    【分析】
    分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
    【详解】
    解:∵,,,
    ∴BC=,
    过CA点作CH⊥AB于H,
    ∴∠ADE=∠ACB=90°,
    ∵,
    ∴CH=4.8,
    ∴AH=,
    当0≤x≤6.4时,如图1,
    ∵∠A=∠A,∠ADE=∠ACB=90°,
    ∴△ADE∽△ACB,
    ∴,即,解得:x=,
    ∴y=•x•=x2;
    当6.4<x≤10时,如图2,
    ∵∠B=∠B,∠BDE=∠ACB=90°,
    ∴△BDE∽△BCA,
    ∴,
    即,解得:x=,
    ∴y=•x•=;
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
    7、C
    【解析】
    【分析】
    根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
    【详解】
    ∵抛物线开口向上,
    ∴a>0,
    ∵抛物线与y轴的交点在y轴的负半轴上,
    ∴c<0,
    ∵抛物线的对称轴在y轴的右边,
    ∴b<0,
    ∴,
    故①正确;
    ∵二次函数的图像与x轴交于点,
    ∴a-b+c=0,
    根据对称轴的左侧,y随x的增大而减小,
    当x=-2时,y>0即,
    故②正确;
    ∵,
    ∴b= -2a,
    ∴3a+c=0,
    ∴2a+c=2a-3a= -a<0,
    故③正确;
    根据题意,得,
    ∴,
    解得,
    故④错误;
    ∵=0,
    ∴,
    ∴y=向上平移1个单位,得y=+1,
    ∴为方程的两个根,且且.
    故⑤正确;
    故选C.
    【点睛】
    本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
    8、D
    【解析】
    【分析】
    求出抛物线y=x2﹣2x+1的顶点坐标为 ,即可求解.
    【详解】
    解:∵ ,
    ∴抛物线y=x2﹣2x+1的顶点坐标为 ,
    ∴将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是 .
    故选:D
    【点睛】
    本题主要考查了二次函数图象的平移,熟练掌握二次函数图象平移法则“左加右减,上加下减”是解题的关键.
    9、D
    【解析】
    【分析】
    首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.
    【详解】
    解:抛物线开口向上,

    对称轴在轴右侧,
    与异号,

    抛物线与轴交于正半轴,

    故选:.
    【点睛】
    此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,
    ①二次项系数决定抛物线的开口方向和大小.
    当时,抛物线向上开口;当时,抛物线向下开口.
    ②一次项系数和二次项系数共同决定对称轴的位置.
    当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)
    ③.常数项决定抛物线与轴交点. 抛物线与轴交于.
    10、B
    【解析】
    【分析】
    利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.
    【详解】
    解:当x=1.3时,ax2+bx+c=2.29,
    当x=1.2时,ax2+bx+c=0.84,
    ∵0.84<2<2.29,
    ∴方程解的范围为1.2<x<1.3,
    故选:B
    【点睛】
    本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.
    二、填空题
    1、4
    【解析】
    【分析】
    先确定两个函数的开口方向和对称轴,再得出符合条件的x的取值范围,从而得到m的最小值.
    【详解】
    解:函数y1=﹣(x﹣4)2+2开口向下,对称轴为直线x=4,
    函数y2=﹣(x﹣3)2+1开口向下,对称轴为直线x=3,
    当函数值都随着x的增大而减小,
    则x≥4,即m的最小值为4,
    故答案为:4.
    【点睛】
    本题考查了二次函数的图像和性质,解题的关键是掌握二次函数的基本性质.
    2、 左 1 下 2
    【解析】
    【分析】
    根据二次函数平移的性质解答.
    【详解】
    解:∵函数的图象向左平移1个单位长度,再向下平移2个单位长度,可以得到函数的图象.
    故答案为:左,1,下,2.
    【点睛】
    此题考查了二次函数图象平移的性质:上加下减,左加右减,熟记性质是解题的关键.
    3、
    【解析】
    【分析】
    把已知点的坐标代入抛物线解析式可得到的值.
    【详解】
    解:二次函数的图象经过点,

    解得:.
    故答案为:.
    【点睛】
    本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.
    4、
    【解析】
    【分析】
    设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.
    【详解】
    解:设抛物线与x轴的两个交点的横坐标为
    是的两根,且

    两个交点之间的距离为4,


    解得: 经检验:是原方程的根且符合题意,
    故答案为:
    【点睛】
    本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.
    5、或## 或
    【解析】
    【分析】
    根据图像即可得出时,抛物线的图像在直线的上方,即可得出x的取值范围.
    【详解】
    如图所示,抛物线与直线的交点为,,
    ∴当时,或.
    故答案为:或.
    【点睛】
    此题主要考查了二次函数与不等式,正确解读函数图象是解题关键.
    三、解答题
    1、 (1)
    (2);
    (3)1<a<3
    【解析】
    【分析】
    (1)利用配方法将抛物线解析式化为顶点式即可解答;
    (2)求出点A、B的坐标,利用三角形面积公式求解a值即可解答;
    (3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解
    (1)
    解:拋物线 ,
    ∴顶点C的坐标为;
    (2)
    解:对于,当x=0时,y=5,当y=0时,x=5,
    ∴A(5,0),B(0,5),
    ∵顶点 在 内部, 且 ,
    ∴,
    ∴a=2,
    ∴拋物线的表达式为 ;
    (3)
    解:由题意,平移后的抛物线的顶点P的坐标为,
    ∵平移后的抛物线的顶 点 仍在 内,
    ∴,
    解得:1<a<3,
    即 的取值范围为1<a<3.
    【点睛】
    本题考查求二次函数的顶点坐标和表达式、二次函数的图象平移、一次函数的图象与坐标轴的交点问题、坐标与图象、解一元一次不等式组,熟练掌握相关知识的联系与运用,第(3)小问正确得出不等式组是解答的关键.
    2、 (1)y=-x2-2x+3
    (2)P1(-2,3)或P2(,)
    (3)点P的坐标为(-,),理由见解析.
    【解析】
    【分析】
    (1)把A(-3,0)、B(1,0)代入y=-x2+bx+c求出b、c的值即可求出该函数表达式;
    (2)设P(m,-m2-2m+3),表示出PE、AE的长,分或两种情况讨论即可找到P的坐标;
    (3)连接AC交PE于点H,把四边形分成两部分,表示出S四边形ABCP=S△PAC+S△ABC即可根据二次函数最值找到P的坐标.
    (1)
    把A(-3,0)、B(1,0)代入y=-x2+bx+c得:

    解得:,
    ∴抛物线的函数解析式为y=-x2-2x+3;
    (2)
    ∵A(-3,0),B(1,0),C(0,3),
    ∴OC=3,OB=1,
    ∴设P(m,-m2-2m+3),
    ∴PE=-m2-2m+3,AE=m+3,
    根据题意得:,
    解得:m1=-2,m2=-3(舍去),
    ∴-m2-2m+3=
    ∴P1(-2,3),
    或,
    解得:m1=,m2=−3(舍去),

    ∴P2(,),
    综上,点P坐标为P1(-2,3)或P2(,).
    (3)
    连接AC交PE于点H,
    由A(-3,0),C(0,3)得直线AC的表达式为:y=x+3,
    设P(m,-m2-2m+3),则H(m,m+3),
    ∴PH=-m2-3m
    ∴S△PAC=⋅(−m2−3m)×3
    ∴S四边形ABCP=S△PAC+S△ABC=
    当m=−时,S最大=,此时点P的坐标为(-,).
    【点睛】
    本题考查待定系数法求解析式,三角形的相似以及面积最值问题,熟练掌握好二次函数相关性质是解题基础,并能分类讨论,数形相结合是解题的关键.
    3、 (1)
    (2)①;②,当时,;当时,;③
    【解析】
    【分析】
    (1)先确定A(-3,0),B(0,3),分别代入解析式,求得b,c的值即可;
    (2)①利用对称轴与直线y=x+3的交点,确定点C(-1,2),代入解析式中,求的值;
    ②分当<m<1和m≥1两种情况解答即可;
    ③根据得b=m+1,结合前面的解答直接写出的范围即可.
    (1)
    ∵直线分别与轴、轴交于点、,
    ∴A(-3,0),B(0,3),
    把A(-3,0),B(0,3)分别代入解析式,得

    解得
    ∴抛物线的解析式为:.
    (2)
    ①∵的对称轴为直线,直线AB的解析式为y=x+3,
    ∴点、,
    ∵点和点重合,
    ∴,
    解得:,
    ∵,
    ∴.
    ②∵点、,且点D在点C的下方,
    ∴CD=2-()=;
    ∵点D在点C的下方,
    ∴,
    当x=1时,,
    ∵轴,
    ∴点F的纵坐标为,
    ∴=即=0,
    解得x== -1±|m-1|,
    当时,x=-1+1-m=-m,此时,交点D不满足在C的下方,舍去;
    或x=-1-1+m=m-2,
    ∴EF=;
    当m≥1时,x=-1+m-1=m-2,此时,交点D不满足在C的下方,舍去;
    或x=-1-m+1=-m,
    ∴EF=.
    ③∵,
    ∴=,
    ∴=,
    ∴b=m+1,b=-(m+1)舍去,
    ∴m≥1.
    【点睛】
    本题考查了待定系数法确定解析式,一元二次方程的解法,抛物线的平移,熟练掌握抛物线的性质,正确解方程是解题的关键.
    4、 (1)y=x2+2x﹣3;
    (2)(﹣,)
    (3)(-1,2)或(-1,﹣4)或(-1,)或(-1,)
    【解析】
    【分析】
    (1)把点A,B代入y=ax2+bx﹣3即可;
    (2)设P(x,x2+2x﹣3),求出直线AB的解析,用含x的代数式表示出点E坐标,即可用含x的代数式表示出PE的长度,由函数的思想可求出点P的横坐标,进一步求出其纵坐标;
    (3)设点Q(-1,a),然后分类讨论利用勾股定理列出关于a的方程求解.
    (1)
    解:把A(﹣3,0)和C(1,0)代入y=ax2+bx﹣3,
    得,,
    解得,,
    ∴抛物线解析式为y=x2+2x﹣3;
    (2)
    解:设P(x,x2+2x﹣3),直线AB的解析式为y=kx+b,
    由抛物线解析式y=x2+2x﹣3,
    令x=0,则y=﹣3,
    ∴B(0,﹣3),
    把A(﹣3,0)和B(0,﹣3)代入y=kx+b,
    得,,
    解得,,
    ∴直线AB的解析式为y=﹣x﹣3,
    ∵PE⊥x轴,
    ∴E(x,﹣x﹣3),
    ∵P在直线AB下方,
    ∴PE=﹣x﹣3﹣( x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,
    当x=﹣时,y=x2+2x﹣3=,
    ∴当PE最大时,P点坐标为(﹣,);
    (3)
    存在,理由如下,
    ∵x=﹣=-1,
    ∴抛物线的对称轴为直线x=-1,
    设Q(-1,a),
    ∵B(0,-3),A(-3,0),
    ①当∠QAB=90°时,AQ2+AB2=BQ2,
    ∴22+a2+32+32=12+(3+a)2,
    解得:a=2,
    ∴Q1(-1,2),
    ②当∠QBA=90°时,BQ2+AB2=AQ2,
    ∴12+(3+a)2+32+32=22+a2,
    解得:a=﹣4,
    ∴Q2(-1,﹣4),
    ③当∠AQB=90°时,BQ2+AQ2=AB2,
    ∴12+(3+a)2+22+a2=32+32,
    解得:a1=或a1=,
    ∴Q3(-1,),Q4(-1,),
    综上所述:点Q的坐标是(-1,2)或(-1,﹣4)或(-1,)或(-1,).
    【点睛】
    本题是二次函数的综合题,主要考查了二次函数图象上点的坐标特征、待定系数法求函数的解析式、二次函数的性质、勾股定理,解题的关键是用含有未知数的代数式表达点的坐标和线段的长度.
    5、 (1)60或80
    (2)当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元
    (3)
    【解析】
    【分析】
    (1)利用利润等于每天的销售额减去总成本,列出方程,即可求解;
    (2)设该专卖店每天获利 元,根据题意,列出函数关系式,再根据二次函数的性质,即可求解;
    (3)设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意列出关于的函数关系式,再根据二次函数的性质,即可求解.
    (1)
    解:根据题意得:

    解得: ,
    答:若该专卖店某天获利800元,销售单价为60或80元/盒;
    (2)
    解:设该专卖店每天获利 元,根据题意得:

    ∴当销售单价x定70元/盒时,该专卖店每天获利最大,最大利润,900元;
    (3)
    解:设该店每天扣除捐出后的利润为 元,每天销售量为 盒,则每盒的销售单价为元/盒 ,每盒的利润为 元,根据题意得:

    ∵ ,
    ∴该图象开口向下,对称轴为: ,
    根据题意得:当 时, 随 的减小而增大,
    ∴ ,解得: ,
    ∵ ,
    ∴m的取值范围为 .
    【点睛】
    本题主要考查了一元二次方程的应用,二次函数的应用,明确题意,准确得到等量关系是解题的关键.
    x
    1.1
    1.2
    1.3
    1.4
    ax2+bx+c
    ﹣0.59
    0.84
    2.29
    3.76
    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共25页。

    数学九年级下册第30章 二次函数综合与测试随堂练习题: 这是一份数学九年级下册第30章 二次函数综合与测试随堂练习题,共26页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。

    九年级下册第30章 二次函数综合与测试练习题: 这是一份九年级下册第30章 二次函数综合与测试练习题,共33页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map