初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试习题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试习题,共32页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系xOy中,已知点A(﹣4,﹣3),以点A为圆心,4为半径画⊙A,则坐标原点O与⊙A的位置关系是( )
A.点O在⊙A内B.点O在⊙A外
C.点O在⊙A上D.以上都有可能
2、如图,若的半径为R,则它的外切正六边形的边长为( )
A.B.C.D.
3、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A.B.C.D.
4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3πB.6πC.12πD.18π
5、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )
A.点B、C均在⊙P内B.点B在⊙P上、点C在⊙P内
C.点B、C均在⊙P外D.点B在⊙P上、点C在⊙P外
6、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是( )
A.0B.1C.2D.无法确定
7、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
A.点在圆内B.点在圆外C.点在圆上D.无法判断
8、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )
A.B.
C.D.
9、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54°B.36°C.32°D.27°
10、如图,中,,,点O是的内心.则等于( )
A.124°B.118°C.112°D.62°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在中,,,,如果以点A为圆心,AC为半径作,那么斜边AB的中点D在______.(填“内”、“上”或者“外”)
2、已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是 _____.
3、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .
4、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.
5、AC是⊙O的直径,弦BD⊥AC于点E,连接BC,过点O作OF⊥BC于点F,若BD=12cm,OE=cm,则OF=________cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.
(1)求证:直线DE是⊙O的切线;
(2)若DE=7,CE=5,求⊙O的半径.
2、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
3、如图,已知是的直径,点在上,点在外.
(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
(2)综合运用,在你所作的图中.若,求证:是的切线.
4、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°
(1)试说明:直线为⊙P的切线.
(2)若∠B=30°,AD=2,求CD的长.
5、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.
(1)如图(1),连接.
①求的正切值;
②求点的坐标.
(2)如图(2),若点是的中点,作于点,连接,,,求证:.
-参考答案-
一、单选题
1、B
【解析】
【分析】
本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.
【详解】
解:∵点A(﹣4,﹣3),
∴,
∵⊙A的半径为4,
∴,
∴点O在⊙A外;
故选:B
【点睛】
本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.
2、B
【解析】
【分析】
如图连结OA,OB,OG,根据六边形ABCDEF为圆外切正六边形,得出∠AOB=60°△AOB为等边三角形,根据点G为切点,可得OG⊥AB,可得OG平分∠AOB,得出∠AOC=,根据锐角三角函数求解即可.
【详解】
解:如图连结OA,OB,OG,
∵六边形ABCDEF为圆外切正六边形,
∴∠AOB=360°÷6=60°,△AOB为等边三角形,
∵点G为切点,
∴OG⊥AB,
∴OG平分∠AOB,
∴∠AOC=,
∴cs30°=,
∴.
故选择B.
【点睛】
本题考查圆与外切正六边形性质,等边三角形性质,锐角三角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键.
3、D
【解析】
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
∴.
在中,,即,
又∵为的切线,
∴,
∴,
解得或0(不合题意舍去).
故选D.
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
4、B
【解析】
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
5、D
【解析】
【分析】
如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
【详解】
解:如图所示,连接DP,CP,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∵AP=3,AB=8,
∴BP=AB-AP=5,
∵,
∴PB=PD,
∴,
∴点C在圆P外,点B在圆P上,
故选D.
【点睛】
本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
6、A
【解析】
【分析】
圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.
【详解】
解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,
∴,
∴直线l与相离,
∴直线l与⊙O的公共点的个数为0,
故选A.
【点睛】
本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.
7、A
【解析】
【分析】
直接根据点与圆的位置关系进行解答即可.
【详解】
解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
∴点P在圆内.
故选:A.
【点睛】
本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.
8、A
【解析】
【分析】
设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
【详解】
解:设正六边形的边长为1,当在上时,
过作于 而
当在上时,延长交于点 过作于
同理:
则为等边三角形,
当在上时,连接
由正六边形的性质可得:
由正六边形的对称性可得: 而
由正六边形的对称性可得:在上的图象与在上的图象是对称的,
在上的图象与在上的图象是对称的,
所以符合题意的是A,
故选A
【点睛】
本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
9、D
【解析】
【分析】
由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.
【详解】
解:∵AB为⊙O的切线,
∴∠OAB=90°,
∵∠ABO=36°,
∴∠AOB=90°﹣∠ABO=54°,
∵OA=OD,
∴∠ADC=∠OAD,
∵∠AOB=∠ADC+∠OAD,
∴∠ADC=∠AOB=27°;
故选:D.
【点睛】
本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.
10、B
【解析】
【分析】
根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
【详解】
解:∵点O是△ABC的内心,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
故选B.
【点睛】
本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
二、填空题
1、上
【解析】
【分析】
先利用中点的含义求解 结合点与圆心的距离等于圆的半径,则点在圆上,从而可得答案.
【详解】
解:如图,,,,为的中点,
在上,
故答案为:上
【点睛】
本题考查的是点与圆的位置关系的判断,掌握“点与圆的位置关系的判断方法”是解本题的关键.
2、相切或相交
【解析】
【分析】
本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.
【详解】
设直线AB上与圆心距离为4cm的点为C,
当OC⊥AB时,OC=⊙O的半径,
所以直线AB与⊙O相切,
当OC与AB不垂直时,圆心O到直线AB的距离小于OC,
所以圆心O到直线AB的距离小于⊙O的半径,
所以直线AB与⊙O相交,
综上所述直线AB与⊙O的位置关系为相切或相交,
故答案为:相切或相交.
【点睛】
本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.
3、3cm
【解析】
【分析】
根据点与圆的位置关系得出:点P在⊙O上,则即可得出答案.
【详解】
∵⊙O的直径为6cm,
∴⊙O的半径为3cm,
∵点P在⊙O上,
∴.
故答案为:3cm.
【点睛】
本题考查点与圆的位置关系:点P在⊙O外,则,点P在⊙O上,则,点P在⊙O内,则.
4、或
【解析】
【分析】
如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.
【详解】
解:如图,连接 (即)分别在优弧与劣弧上,
PM,PN分别与⊙O相切于A,B两点,
故答案为:或
【点睛】
本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.
5、或
【解析】
【分析】
根据题意分两种情况并综合利用垂径定理和勾股定理以及圆的基本性质进行分析即可求解.
【详解】
解:如图,连接BO
∵AC是⊙O的直径,弦BD⊥AC于点E,BD=12cm,
∴,
∵OE=cm,BD⊥AC,
∴cm,
∴,,
∵OF⊥BC,
∴,
∴,
如图,
∵OE=cm,BD⊥AC, ,
∴,
∵OF⊥BC,
∴,
∴.
故答案为:或.
【点睛】
本题考查圆的综合问题,熟练掌握并利用垂径定理和勾股定理以及圆的基本性质进行分析是解题的关键.注意未作图题一般情况下要进行分类作图讨论.
三、解答题
1、 (1)见解析
(2)4
【解析】
【分析】
(1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;
(2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.
(1)
证明:连接OD,
∵∠ACB=90°,AC=BC,
∴∠ABC=45°,
∴∠COD=2∠ABC=90°,
∵四边形GDEC是平行四边形,
∴DE∥CG,
∴∠ODE+∠COD=180°,
∴∠ODE=90°,即OD⊥DE,
∵OD是半径,
∴直线DE是⊙O的切线;
(2)
解:设⊙O的半径为r,
∵四边形GDEC是平行四边形,
∴CG=DE=7,DG=CE=5,
∵∠GOD=90°,
∴OD2+OG2=DG2,即r2+(7﹣r)2=52,
解得:r1=3,r2=4,
当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,
∴r=4,即⊙O的半径4.
【点睛】
本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
3、 (1)作图见解析
(2)证明见解析
【解析】
【分析】
(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
(1)
解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.
(2)
解:连接AD,如图
∵为直径
∴
∵
∴
∴
又∵AB为直径
∴AE是的切线.
【点睛】
本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
4、 (1)见解析
(2)
【解析】
【分析】
(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
(1)
连接PC,
∵PC=PB,
∴∠B=∠PCB,
∴∠APC=2∠B,
∵2∠B+∠DAB=180°,
∴∠DAP+∠APC=180°,
∴PC∥DA,
∵∠ADC=90°,
∴∠DCP=90°,
即DC⊥CP,
∴直线CD为⊙P的切线;
(2)
连接AC,
∵∠B=30°,
∴∠CPA=2∠B=60°,
∵AP=CP,∠CPA=60°,
∴△APC为等边三角形,
∵∠DCP=90°,
∴∠DCA=90°-∠ACP=90°-60°=30°,
∵AD=2,∠ADC=90°,
∴AC=2AD=4,
∴CD=.
【点睛】
本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
5、 (1)①,②(4,3)
(2)见解析
【解析】
【分析】
(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
(1)
解:①以AB为直径的圆的圆心为P,
过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
则DH=HC=DC,四边形AOHF为矩形,
∴AF=OH,FH=OA=1,
解方程x2﹣4x+3=0,得x1=1,x2=3,
∵OC>OD,
∴OD=1,OC=3,
∴DC=2,
∴DH=1,
∴AF=OH=2,
设圆的半径为r,则PH2=,
∴PF=PH﹣FH,
在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
解得:r=,PH=2,PF=PH﹣FH=1,
∵∠AOD=90°,OA=OD=1,
∴AD=,
∵AB为直径,
∴∠ADB=90°,
∴BD===3,
∴tan∠ABD===;
②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
∴∠BEO=90°,
∵AB为直径,
∴∠AGB=90°,
∵∠AOE=90°,
∴四边形AOEG是矩形,
∴OE=AG,OA=EG=1,
∵AF=2,
∵PH⊥DC,
∴PH⊥AG,
∴AF=FG=2,
∴AG=OE=4,BG=2PF=2,
∴BE=3,
∴点B的坐标为(4,3);
(2)
证明:过点E作EH⊥x轴于H,
∵点E是的中点,
∴=,
∴ED=EB,
∵四边形EDCB为圆P的内接四边形,
∴∠EDH=∠EBF,
在△EHD和△EFB中,
,
∴△EHD≌△EFB(AAS),
∴EH=EF,DH=BF,
在Rt△EHC和Rt△EFC中,
,
∴Rt△EHC≌Rt△EFC(HL),
∴CH=CF,
∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.
【点睛】
本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
相关试卷
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共31页。试卷主要包含了将一把直尺等内容,欢迎下载使用。
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试单元测试巩固练习,共31页。试卷主要包含了如图,,如图,将的圆周分成五等分等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后复习题,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。