搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克练习题(无超纲)

    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克练习题(无超纲)第1页
    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克练习题(无超纲)第2页
    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克练习题(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试随堂练习题

    展开

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试随堂练习题,共33页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )
    A.10cmB.8cmC.6cmD.5cm
    2、在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( )
    A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交
    C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交
    3、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).
    A.B.C.D.
    4、下列四个命题中,真命题是( )
    A.相等的圆心角所对的两条弦相等B.三角形的内心是到三角形三边距离相等的点
    C.平分弦的直径一定垂直于这条弦D.等弧就是长度相等的弧
    5、如图,AB是⊙O的直径,C,D是⊙O上两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于( )
    A.40°B.50°C.55°D.60°
    6、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )
    A.4B.3C.2D.1
    7、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )
    A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定
    8、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是( )
    A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断
    9、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
    A.6,3B.6,3C.3,6D.6,3
    10、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为( )
    A.1B.2C.3D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).
    2、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
    3、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.
    4、下面给出了用三角尺画一个圆的切线的步骤示意图,但顺序需要进行调整,正确的画图步骤是________.
    5、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.
    (1)求证:PC是⊙O的切线;
    (2)求证:;
    (3)若,△ACD的面积为12,求PB的长.
    2、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.
    (1)求证:AB是的切线;
    (2)若,,求的半径.
    3、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.
    (1)求证:;
    (2)求证:AF是⊙O的切线.
    4、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.
    (1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
    (2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
    ①线段;②线段;③线段
    (3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
    (4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.
    5、如图,是的切线,点在上,与相交于,是的直径,连接,若.
    (1)求证:平分;
    (2)当,时,求的半径长.
    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.
    【详解】
    解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,
    由题意可知cm,cm;

    ∴AC=BC=4cm,
    设茶杯的杯口外沿半径为
    则在中,由勾股定理知
    解得
    故选D.
    【点睛】
    本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.
    2、B
    【解析】
    【分析】
    由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若dr,则直线与圆相离.
    【详解】
    解:∵点(2,3)到x轴的距离是3,等于半径,
    到y轴的距离是2,小于半径,
    ∴圆与y轴相交,与x轴相切.
    故选B.
    【点睛】
    本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
    3、D
    【解析】
    【分析】
    连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.
    【详解】
    解:连接、,
    ,的内接正六边形,

    ∴△DOE是等边三角形,
    ∴∠DOM=30°,
    设,则

    解得:,

    根据图可得:,


    故选:D.
    【点睛】
    本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.
    4、B
    【解析】
    【分析】
    利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.
    【详解】
    解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;
    B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;
    C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;
    D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;
    故选:B
    【点睛】
    本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.
    5、C
    【解析】
    【分析】
    连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.
    【详解】
    解:连接OC,如图所示:
    ∵CE与相切,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    故选:C.
    【点睛】
    题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    6、A
    【解析】
    【分析】
    根据点与圆的位置关系得出OP>3即可.
    【详解】
    解:∵⊙O的半径为3,点P在⊙O外,
    ∴OP>3,
    故选:A.
    【点睛】
    本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
    7、A
    【解析】
    【分析】
    根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.
    【详解】
    解:∵⊙O的半径分别是3,点P到圆心O的距离为4,
    ∴d>r,
    ∴点P与⊙O的位置关系是:点在圆外.
    故选:A.
    【点睛】
    本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.
    8、A
    【解析】
    【分析】
    已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.
    【详解】
    ∵⊙O的半径为3,若PO=2,
    ∴2<3,
    ∴点P与⊙O的位置关系是点P在⊙O内,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.
    9、B
    【解析】
    【分析】
    如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
    【详解】
    解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=360°÷6=60°,
    ∵OA=OB,
    ∴△OAB是等边三角形,
    ∴OA=AB=6;
    (2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,
    ∵六边形ABCDEF是正六边形,
    ∴∠AO1B=60°,
    ∵O1A= O1B,
    ∴△O1AB是等边三角形,
    ∴O1A= AB=6,
    ∵O1M⊥AB,
    ∴∠O1MA=90°,AM=BM,
    ∵AB=6,
    ∴AM=BM,
    ∴O1M.
    故选B.
    【点睛】
    本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
    10、D
    【解析】
    【分析】
    根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.
    【详解】
    解:∵点A为⊙O外的一点,且⊙O的半径为3,
    ∴线段OA的长度>3.
    故选:D.
    【点睛】
    此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.
    二、填空题
    1、①②③
    【解析】
    【分析】
    根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.
    【详解】
    解:如图, 是的两条切线,
    故①正确,
    故②正确,
    是的两条切线,

    取的中点,连接,则
    ∴以为圆心,为半径作圆,则共圆,故③正确,
    M是外接圆的圆心,

    与题干提供的条件不符,故④错误,
    综上:正确的说法是①②③.
    故填①②③.
    【点睛】
    本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.
    2、∠ABT=∠ATB=45°(答案不唯一)
    【解析】
    【分析】
    根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
    【详解】
    解:添加条件:∠ABT=∠ATB=45°,
    ∵∠ABT=∠ATB=45°,
    ∴∠BAT=90°,
    又∵AB是圆O的直径,
    ∴AT是圆O的切线,
    故答案为:∠ABT=∠ATB=45°(答案不唯一).
    【点睛】
    本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
    3、
    【解析】
    【分析】
    当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.
    【详解】
    ∵圆心P的坐标为(1,0),⊙P与y轴相切与点O
    ∴⊙P的半径为1
    ∵点A(-3,0),点 B(0,)
    ∴OA=3,

    ∴∠BAO=30°
    当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC
    则PC⊥AB,且PC=1
    ∴AP=2PC=2
    ∴OP=OA−AP=3−2=1
    ∴P点坐标为(−1,0)
    即m=−1
    当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD
    则PD⊥AB,且PD=1
    ∴AP=2PD=2
    ∴OP=OA+AP=3+2=5
    ∴P点坐标为(−5,0)
    即m=−5
    ∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为
    故答案为:
    【点睛】
    本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.
    4、②③④①
    【解析】
    【分析】
    先根据直径所对的圆周角是直角确定圆的一条直径,然后根据圆的一条切线与切点所在的直径垂直,进行求解即可.
    【详解】
    解:第一步:先根据直径所对的圆周角是直角,确定圆的一条直径与圆的交点,即图②,
    第二步:画出圆的一条直径,即画图③;
    第三边:根据切线的判定可知,圆的一条切线与切点所在的直径垂直,确定切点的位置从而画出切线,即先图④再图①,
    故答案为:②③④①.
    【点睛】
    本题主要考查了直径所对的圆周角是直角,切线的判定,熟知相关知识是解题的关键.
    5、65
    【解析】
    【分析】
    根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.
    【详解】
    解:∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴,
    ∵∠APO=25°,
    ∴,
    故答案为:65.
    【点睛】
    本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    三、解答题
    1、 (1)见解析
    (2)见解析
    (3)
    【解析】
    【分析】
    (1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;
    (2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;
    (3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.
    (1)
    连接OC,如图,
    ∵AB是的直径,

    即.
    ,,

    .

    .

    又是半径,
    是⊙O的切线.
    (2)
    由(1),得.

    .


    平分,
    .
    又,
    ,即.

    .
    (3)
    作于点F,如图,

    平分,,

    ,由勾股定理得:.
    ,,

    .

    .
    设,

    .
    解得或(舍去).

    Rt△ACF中,由勾股定理得:,
    ,.
    由(2)得,
    .
    ,,


    【点睛】
    本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.
    2、 (1)见解析
    (2)2.4.
    【解析】
    【分析】
    (1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;
    (2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.
    (1)
    如图所示:过O作OD⊥AB交AB于点D.
    ∵OC⊥BC,且BO平分∠ABC,
    ∴OD=OC,
    ∵OC是圆O的半径
    ∴AB与圆O相切.
    (2)
    设圆O的半径为r,即OC=r,



    ∵OC⊥BC,且OC是圆O的半径
    ∴BC是圆O的切线,
    又AB是圆O的切线,
    ∴BD=BC=3r
    在中,


    在中,

    整理得,
    解得,,(不合题意,舍去)
    ∴的半径为2.4
    【点睛】
    此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
    3、 (1)见解析;
    (2)见解析
    【解析】
    【分析】
    (1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
    (2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
    (1)
    解:∵,
    ∴,
    又∵,
    ∴,
    ∴ ;
    (2)
    解:如图,连接OA,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵已知,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴AF为⊙O的切线.
    【点睛】
    本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
    4、 (1)
    (2)②,③
    (3)
    (4)
    【解析】
    【分析】
    (1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
    (2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
    (3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
    (4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
    (1)
    解:如图所示:作OD与相切,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴此时的角度最小,且,
    ∴切点在线段OD上,
    ∴OA的关联角为;
    (2)
    解:如图所示:连接,,,,
    ∵,,
    ∴,
    ∴切点不在线段上,不是的“关联线段”;
    ∵,,
    ∴,,
    ∵,
    ∴是的“关联线段”;
    ∵,
    ∴是的“关联线段”;
    (3)
    解:,,线段BD绕点O的旋转路线的半径为1的上,
    当OD与相切时,
    由(1)可得:,
    ∴当时,线段BD是的“关联线段”,
    故答案为:;
    (4)
    解:如图所示:当m取最大值时,
    M点运动最小半径是O到过点的直线l的距离是m,
    ∵,,
    ∴,
    ∴,
    ∴m的最大值为4,
    如图所示:当m取小值时,
    开始时存在ME与相切,
    ∵,,
    ∴,
    ∵,及点M所在位置,
    ∴,
    综上可得:,
    故答案为:.
    【点睛】
    题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
    5、 (1)见解析
    (2)的半径长为.
    【解析】
    【分析】
    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
    (1)
    证明:如图,连接,
    ∵是的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即平分;
    (2)
    解:如图,连接,
    在中,,,
    由勾股定理得:,
    ∵是的直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即,
    解得:,
    ∴的半径长为.
    【点睛】
    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习,共34页。试卷主要包含了若O是ABC的内心,当时,等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题,共34页。

    九年级下册第29章 直线与圆的位置关系综合与测试精品课时训练:

    这是一份九年级下册第29章 直线与圆的位置关系综合与测试精品课时训练,共30页。试卷主要包含了将一把直尺,下列说法正确的是,下列四个命题中,真命题是,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map