|试卷下载
搜索
    上传资料 赚现金
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(无超纲)
    立即下载
    加入资料篮
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(无超纲)01
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(无超纲)02
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(无超纲)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第29章 直线与圆的位置关系综合与测试课后练习题

    展开
    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试课后练习题,共30页。

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为( )
    A.14cmB.8cmC.7cmD.9cm
    2、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
    A.点在圆内B.点在圆外C.点在圆上D.无法判断
    3、如图,与相切于点,经过的圆心与交于,若,则( )
    A.B.C.D.
    4、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )
    A.20°B.30°C.50°D.40°
    5、如图,BD是⊙O的切线,∠BCE=30°,则∠D=( )
    A.40°B.50°C.60°D.30°
    6、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    7、若正方形的边长为4,则它的外接圆的半径为( )
    A.B.4C.D.2
    8、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是( )
    A.4B.3C.2D.1
    9、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )
    A.1cmB.2cmC.2cmD.4cm
    10、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
    A.20°B.25°C.30°D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、⊙O的半径为3cm,如果圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是____________.
    2、如图,在RtABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则ABC的面积是______.
    3、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.
    4、如图,AB是⊙O的切线,A为切点,连结OA、OB.若OA=5,AB=6,则tan∠AOB=______.
    5、如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D.若∠A=30°,则∠D的度数为______°.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
    (1)判断DE所在直线与ΘO的位置关系,并说明理由;
    (2)若AE=4,ED=2,求ΘO的半径.
    2、如图,是的切线,点在上,与相交于,是的直径,连接,若.
    (1)求证:平分;
    (2)当,时,求的半径长.
    3、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.
    (1)求证:AC为的切线:
    (2)若半径为2,.求阴影部分的面积.
    4、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
    (1)求证:直线DC是⊙O的切线;
    (2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
    5、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
    (1)求证是的切线;
    (2)若,,求的半径.
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.
    【详解】
    解:∵圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,
    ∴BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,
    ∵△ABC周长为20cm,BC=6cm,
    ∴AE=AD====4(cm),
    ∴△AMN的周长为AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4+4=8(cm),
    故选:B.
    【点睛】
    本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大.
    2、A
    【解析】
    【分析】
    直接根据点与圆的位置关系进行解答即可.
    【详解】
    解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
    ∴点P在圆内.
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.
    3、B
    【解析】
    【分析】
    连结CO,根据切线性质与相切于点,得出OC⊥BC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.
    【详解】
    解:连结CO,
    ∵与相切于点,
    ∴OC⊥BC,
    ∴∠COB+∠B=90°,
    ∵,
    ∴∠COB=90°-∠B=90°-40°=50°,
    ∴.
    故选B.
    【点睛】
    本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.
    4、C
    【解析】
    【分析】
    连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.
    【详解】
    解:连接OC,
    ∵DC切⊙O于点C,
    ∴∠OCD=90°,
    ∵∠A=20°,
    ∴∠OCA=20°,
    ∴∠DOC=40°,
    ∴∠D=90°-40°=50°.
    故选:C.
    【点睛】
    本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.
    5、D
    【解析】
    【分析】
    连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得.
    【详解】
    解:连接
    BD是⊙O的切线
    故选D
    【点睛】
    本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.
    6、B
    【解析】
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    7、C
    【解析】
    【分析】
    根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.
    【详解】
    解:∵四边形是正方形,
    ∴的交点即为它的外接圆的圆心,
    故选C
    【点睛】
    本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.
    8、B
    【解析】
    【分析】
    连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.
    【详解】
    解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
    ∵G是BC的中点,
    ∴CG=BG,
    ∵CD=BA,根据勾股定理可得,
    ∴AG=DG,
    ∴GH垂直平分AD,
    ∴点O在HG上,
    ∵AD∥BC,
    ∴HG⊥BC,
    ∴BC与圆O相切;
    ∵OG=OD,
    ∴点O不是HG的中点,
    ∴圆心O不是AC与BD的交点;
    ∵∠ADF=∠DAE=90°,
    ∴∠AEF=90°,
    ∴四边形AEFD为⊙O的内接矩形,
    ∴AF与DE的交点是圆O的圆心;AE=DF;
    ∴(1)错误,(2)(3)(4)正确.
    故选:B.
    【点睛】
    本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.
    9、D
    【解析】
    【分析】
    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
    【详解】
    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于
    设半径为r,即OA=OB=AB=r,
    OM=OA•sin∠OAB=,
    ∵圆O的内接正六边形的面积为(cm2),
    ∴△AOB的面积为(cm2),
    即,

    解得r=4,
    故选:D.
    【点睛】
    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
    10、B
    【解析】
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,
    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    二、填空题
    1、相离
    【解析】
    【分析】
    根据直线和圆的位置关系的判定方法判断即可.
    【详解】
    解:∵⊙O的半径为3cm,圆心O到直线l的距离为d=5cm,
    ∴d>r,
    ∴直线l与⊙O的位置关系是相离,
    故答案为:相离.
    【点睛】
    本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.
    2、6
    【解析】
    【分析】
    根据题意利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理即可得出答案.
    【详解】
    解:连接DO,EO,
    ∵⊙O是△ABC的内切圆,切点分别为D,E,F,
    ∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=2,AF=AE=3
    又∵∠C=90°,
    ∴四边形OECD是矩形,
    又∵EO=DO,
    ∴矩形OECD是正方形,
    设EO=x,
    则EC=CD=x,
    在Rt△ABC中
    BC2+AC2=AB2
    故(x+2)2+(x+3)2=52,
    解得:x=1,
    ∴BC=3,AC=4,
    ∴S△ABC=×3×4=6.
    故答案为:6.
    【点睛】
    本题主要考查三角形内切圆与内心,根据题意得出四边形OECF是正方形以及运用方程思维和勾股定理进行分析是解题的关键.
    3、
    【解析】
    【分析】
    先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
    【详解】
    解:∵BC是圆O的切线,
    ∴∠OBC=90°,
    ∵四边形ABCO是平行四边形,
    ∴AO=BC,
    又∵AO=BO,
    ∴BO=BC,
    ∴∠BOC=∠BCO=45°,
    ∵OD=OB,
    ∴∠ODB=∠OBD,
    ∵∠ODB+∠OBD=∠BOC,
    ∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
    故答案为:22.5°.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
    4、
    【解析】
    【分析】
    由题意易得∠OAB=90°,然后根据三角函数可进行求解.
    【详解】
    解:∵AB是⊙O的切线,
    ∴∠OAB=90°,
    在Rt△OAB中,OA=5,AB=6,
    ∴,
    故答案为.
    【点睛】
    本题主要考查三角函数与切线的性质,熟练掌握三角函数与切线的性质是解题的关键.
    5、30
    【解析】
    【分析】
    连接OC,根据切线的性质定理得到∠OCD=90°,根据三角形内角和定理求出∠D.
    【详解】
    解:连接OC,
    ∵CD为⊙O的切线,
    ∴∠OCD=90°,
    由圆周角定理得,∠COD=2∠A=60°,
    ∴∠D=90°-60°=30°,
    故答案为:30.
    【点睛】
    本题考查的是切线的性质,圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    三、解答题
    1、 (1)相切,理由见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
    (2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
    (1)
    解:所在直线与相切.
    理由:连接.
    ∵,
    ∴.
    ∵平分,
    ∴.
    ∴.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    ∵是半径,
    ∴所在直线与相切.
    (2)
    解:连接.
    ∵是的直径,
    ∴.
    ∴.
    又∵,
    ∴.
    ∴.
    ∵,,,
    ∴.
    ∴.
    ∴的半径为.
    【点睛】
    本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
    2、 (1)见解析
    (2)的半径长为.
    【解析】
    【分析】
    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
    (1)
    证明:如图,连接,
    ∵是的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即平分;
    (2)
    解:如图,连接,
    在中,,,
    由勾股定理得:,
    ∵是的直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即,
    解得:,
    ∴的半径长为.
    【点睛】
    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
    3、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)根据切线的判定方法,证出即可;
    (2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.
    (1)
    解:如图,连接OB,
    ∵AB是的切线,
    ∴,即,
    ∵BC是弦,,
    ∴,
    ∴,在和中,,
    ∴,
    ∴,即,
    ∴AC是的切线;
    (2)
    解:在中,
    由勾股定理得,,,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.
    4、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
    (2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
    (1)
    证明:如图所示,连接OC,
    ∵AB是的直径,直线l与相切于点A,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴直线DC是的切线.
    (2)
    解:∵,
    ∴,
    又∵,
    ∴是等边三角形,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴阴影部分的面积=.
    【点睛】
    本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
    5、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
    (2)证明,利用相似三角形的性质可求的半径.
    (1)
    证明:连接,
    ∵,
    ∴,
    ∴是直径,是的中点.
    ∵平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    又∵,
    ∴,
    ∴,
    又∵经过半径的外端,
    ∴是的切线.
    (2)
    解:∵,
    ∴,
    在与中,
    ,,
    ∴.
    ∴,
    在中,,,
    ∴.
    设半径为,则,,
    即,
    ∴.
    ∴的半径为.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题,共34页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评,共31页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀测试题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀测试题,共34页。试卷主要包含了如图,一把宽为2cm的刻度尺,将一把直尺等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map