


初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试一课一练
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试一课一练,共32页。试卷主要包含了如图,PA等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是( )
A.0 B.1 C.2 D.无法确定
2、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是( )
A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断
3、一个正多边形的半径与边长相等,则这个正多边形的边数为( )
A.4 B.5 C.6 D.8
4、如图,PA、PB是的切线,A、B为切点,连接OB、AB,若,则的度数为( )
A.50° B.55° C.65° D.70°
5、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
6、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为( )
A.15° B.20° C.25° D.30°
7、已知⊙O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与⊙O的位置关系是( )
A.点A在⊙O内 ; B.点A在⊙O上;
C.点A在⊙O外; D.不能确定.
8、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.相交或相切
9、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为( )
A.1 B.2 C. D.
10、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点为D,E,F,若AD=5,BE=12,则△ABC的周长为_____.
2、如图,AB是⊙O的切线,A为切点,连结OA、OB.若OA=5,AB=6,则tan∠AOB=______.
3、如图,半圆O的直径DE=12cm,在中,,,.半圆O以2cm/s的速度从左向右运动,当圆心O运动到点B时停止,点D、E始终在直线BC上.设运动时间为(s),运动开始时,半圆O在的左侧,.当______时,的一边所在直线与半圆O所在的圆相切.
4、如图,∠1是正五边形两条对角线的夹角,则∠1=_______度.
5、一个正多边形的中心角是,则这个正多边形的边数为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.
(1)求证:直线DE是⊙O的切线;
(2)若DE=7,CE=5,求⊙O的半径.
2、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.
(1)如图(1),连接.
①求的正切值;
②求点的坐标.
(2)如图(2),若点是的中点,作于点,连接,,,求证:.
3、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).
(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
①设A、B、P三点所在圆的圆心为C,则点C的坐标是 ,⊙C的半径是 ;
②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为 .
4、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
5、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.
(1)求证:PC是⊙O的切线;
(2)求证:;
(3)若,△ACD的面积为12,求PB的长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.
【详解】
解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,
∴,
∴直线l与相离,
∴直线l与⊙O的公共点的个数为0,
故选A.
【点睛】
本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.
2、A
【解析】
【分析】
已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.
【详解】
∵⊙O的半径为3,若PO=2,
∴2<3,
∴点P与⊙O的位置关系是点P在⊙O内,
故选:A.
【点睛】
本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.
3、C
【解析】
【分析】
如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得.
【详解】
解:如图,由题意得:,
是等边三角形,
,
则这个正多边形的边数为,
故选:C.
【点睛】
本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.
4、A
【解析】
【分析】
根据切线的性质得出PA=PB,∠PBO=90°,再根据三角形内角和定理求解即可.
【详解】
∵PA、PB是⊙O的切线,
∴PA=PB,∠OBP=90°,
又∵∠ABO=25°,
∴∠PBA=90°-25°=65°=∠PAB,
∴∠P=180°-65°-65°=50°,
故选:A.
【点睛】
本题考查切线的性质,三角形内角和定理,掌握切线的性质和等腰三角形的性质,三角形内角和为180°是解题的关键.
5、A
【解析】
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
6、C
【解析】
【分析】
根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.
【详解】
解:∵CD是⊙O的切线,
∴∠CDO=90°,
∵∠C=40°,
∴∠COD=90°-40°=50°,
∵OD=OB,
∴∠B=∠ODB,
∵∠COD=∠B+∠ODB,
∴∠B=∠COD=25°,
故选:C.
【点睛】
本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.
7、C
【解析】
【分析】
要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.
【详解】
解:∵⊙O的半径为3cm,OA=6cm,
∴d>r,
∴点A与⊙O的位置关系是:点A在⊙O外,
故选:C.
【点睛】
本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
8、B
【解析】
【分析】
圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
【详解】
解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
⊙O的半径等于圆心O到直线l的距离,
直线l与⊙O的位置关系为相切,
故选B
【点睛】
本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
9、D
【解析】
【分析】
作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.
【详解】
解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,
∵⊙O与AC、BC都相切,
∴OD=OE=r,
而∠C=90°,
∴四边形ODCE为正方形,
∴CD=OD=r,
∵OD∥BC,
∴△ADO∽△ACB,
∴
∵AF=AC-r,BC=3,AC=4,
代入可得,
∴r=.
故选:D.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.
10、B
【解析】
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
二、填空题
1、40
【解析】
【分析】
利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理得出答案.
【详解】
解:连接EO,DO,
∵⊙O是△ABC的内切圆,切点分别为D,E,F,
∴OE⊥BC,OD⊥AC,BF=BE=12,AD=AF=5,EC=CD,
又∵∠C=90°,
∴四边形ECDO是矩形,
又∵EO=DO,
∴矩形OECD是正方形,
设EO=x,
则EC=CD=x,
在Rt△ABC中
BC2+AC2=AB2
故(x+12)2+(x+5)2=172,
解得:x=3(负值已舍),
∴△ABC的周长=8+15+17=40.
故答案为:40.
【点睛】
本题主要考查了三角形内切圆与内心,切线长定理,勾股定理,正方形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.
2、
【解析】
【分析】
由题意易得∠OAB=90°,然后根据三角函数可进行求解.
【详解】
解:∵AB是⊙O的切线,
∴∠OAB=90°,
在Rt△OAB中,OA=5,AB=6,
∴,
故答案为.
【点睛】
本题主要考查三角函数与切线的性质,熟练掌握三角函数与切线的性质是解题的关键.
3、1或4或7
【解析】
【分析】
的一边所在直线与半圆O所在的圆相切有三种情况:当点C与点E重合、点O与点C重合以及点D与点C重合,分别找出点O运动的路程,即可求出答案.
【详解】
如图,当点C与点E重合时,AC与半圆O所在的圆相切,
∵,
∴,
∴,即点O运动了2cm,
∴,
当AB与半圆O所在的圆相切时,
过点C作交于点F,
∵,,
∴,
∴,即点O与点C重合,
∴点O运动了8cm,
∴,
当点C与点D重合时,AC与半圆O所在的圆相切,
,即点O运动了14cm,
∴,
故答案为:1或4或7.
【点睛】
考查了直线与圆的位置关系和点与圆的位置关系.并能根据圆心到直线的距离来判断直线与圆的位置关系.
4、72
【解析】
【分析】
根据多边形的内角和定理及正多边形的性质即可求得结果.
【详解】
正五边形的每个内角为
∵多边形为正五边形,即AB=BC=CD,如图
∴△ABC、△BCD均为等腰三角形,且∠ABC=∠BCD=108°
∴
∴∠1=∠BCA+∠CBD=72°
故答案为:72
【点睛】
本题考查了正多边形的性质及多边形的内角和定理,三角形外角性质,等腰三角形性质等知识,掌握正多边形的性质及多边形内角和定理是本题的关键.
5、九##9
【解析】
【分析】
根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.
【详解】
解:设这个正多边形的边数为n,
∵这个正多边形的中心角是40°,
∴,
∴,
∴这个正多边形是九边形,
故答案为:九.
【点睛】
本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.
三、解答题
1、 (1)见解析
(2)4
【解析】
【分析】
(1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;
(2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.
(1)
证明:连接OD,
∵∠ACB=90°,AC=BC,
∴∠ABC=45°,
∴∠COD=2∠ABC=90°,
∵四边形GDEC是平行四边形,
∴DE∥CG,
∴∠ODE+∠COD=180°,
∴∠ODE=90°,即OD⊥DE,
∵OD是半径,
∴直线DE是⊙O的切线;
(2)
解:设⊙O的半径为r,
∵四边形GDEC是平行四边形,
∴CG=DE=7,DG=CE=5,
∵∠GOD=90°,
∴OD2+OG2=DG2,即r2+(7﹣r)2=52,
解得:r1=3,r2=4,
当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,
∴r=4,即⊙O的半径4.
【点睛】
本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.
2、 (1)①,②(4,3)
(2)见解析
【解析】
【分析】
(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
(1)
解:①以AB为直径的圆的圆心为P,
过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
则DH=HC=DC,四边形AOHF为矩形,
∴AF=OH,FH=OA=1,
解方程x2﹣4x+3=0,得x1=1,x2=3,
∵OC>OD,
∴OD=1,OC=3,
∴DC=2,
∴DH=1,
∴AF=OH=2,
设圆的半径为r,则PH2=,
∴PF=PH﹣FH,
在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
解得:r=,PH=2,PF=PH﹣FH=1,
∵∠AOD=90°,OA=OD=1,
∴AD=,
∵AB为直径,
∴∠ADB=90°,
∴BD===3,
∴tan∠ABD===;
②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
∴∠BEO=90°,
∵AB为直径,
∴∠AGB=90°,
∵∠AOE=90°,
∴四边形AOEG是矩形,
∴OE=AG,OA=EG=1,
∵AF=2,
∵PH⊥DC,
∴PH⊥AG,
∴AF=FG=2,
∴AG=OE=4,BG=2PF=2,
∴BE=3,
∴点B的坐标为(4,3);
(2)
证明:过点E作EH⊥x轴于H,
∵点E是的中点,
∴=,
∴ED=EB,
∵四边形EDCB为圆P的内接四边形,
∴∠EDH=∠EBF,
在△EHD和△EFB中,
,
∴△EHD≌△EFB(AAS),
∴EH=EF,DH=BF,
在Rt△EHC和Rt△EFC中,
,
∴Rt△EHC≌Rt△EFC(HL),
∴CH=CF,
∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.
【点睛】
本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
3、 (1)①(4,3)或C(4,−3),,②,
(2)
【解析】
【分析】
(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
(1)
①如图1中,
在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
圆心C的坐标为(4,3),半径为3,
根据对称性可知点C(4,−3)也满足条件,
故答案是:(4,3)或C(4,−3),,
②y轴的正半轴上存在线段AB的“等角点”。
如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,
∵⊙C的半径,
∴⊙C与y轴相交,
设交点为,,此时,在y轴的正半轴上,
连接、、CA,则==CA =r=3,
∵CD⊥y轴,CD=4,,
∴,
∴,;
当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
故答案为:,
(2)
当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,
∵点P,点N在⊙E上,
∴∠APB=∠ANB,
∵∠ANB是△MAN的外角,
∴∠ANB>∠AMB,
即∠APB>∠AMB,
此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
∵⊙E与y轴相切于点P,则EP⊥y轴,
∴四边形OPEF是矩形,OP=EF,PE=OF=4,
∴⊙E的半径为4,即EA=4,
∴在Rt△AEF中,,
∴,
即 .
故答案为:
【点睛】
本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
4、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
5、 (1)见解析
(2)见解析
(3)
【解析】
【分析】
(1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;
(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;
(3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.
(1)
连接OC,如图,
∵AB是的直径,
,
即.
,,
,
.
,
.
.
又是半径,
是⊙O的切线.
(2)
由(1),得.
,
.
,
.
平分,
.
又,
,即.
,
.
(3)
作于点F,如图,
.
平分,,
.
,由勾股定理得:.
,,
,
.
,
.
设,
,
.
解得或(舍去).
.
Rt△ACF中,由勾股定理得:,
,.
由(2)得,
.
,,
,
,
【点睛】
本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试单元测试课堂检测,共31页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时训练,共33页。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时训练,共34页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。
