|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试题(精选)
    立即下载
    加入资料篮
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试题(精选)01
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试题(精选)02
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试题(精选)03
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试同步测试题

    展开
    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试同步测试题,共33页。

    九年级数学下册第二十九章直线与圆的位置关系章节训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、若正方形的边长为4,则它的外接圆的半径为(      

    A. B.4 C. D.2

    2、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为(    

    A. B.

    C.3 D.

    3、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是(  )

    A.30° B.36° C.60° D.72°

    4、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(      

    A.19° B.38° C.52° D.76°

    5、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是(  )

    A.18° B.28° C.36° D.45°

    6、如图,相切于点经过的圆心与交于,若,则      

    A. B. C. D.

    7、如图,的两边分别相切,其中OA边与⊙C相切于点P.若,则OC的长为(      

    A.8 B. C. D.

    8、如图,一把直尺,60°的直角三角板和一个量角器如图摆放,A为60°角与刻度尺交点,刻度尺上数字为4,点B为量角器与刻度尺的接触点,刻度为7,则该量角器的直径是(    

          

    A.3 B. C.6 D.

    9、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是(      

    A.点P在⊙O B.点P在⊙O C.点P在⊙O D.无法判断

    10、如图,在中,以AB为直径的圆交AC于点D的切线DEBC于点E,若于点E,则的半径为(       ).

    A.4 B. C.2 D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.

    2、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点ABC的距离均等于aa为常数).那么常数a的值等于________.

    3、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.

    4、已知边长为2的正三角形,能将其完全覆盖的最小圆的面积为__________.

    5、如图,在△ABC中,ABACBC=2,以点A为圆心作圆弧,与BC相切于点D,且分别交边ABAC于点EF,则扇形AEF的面积为 _____.(结果保留π

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在平面直角坐标系中,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段的“关联角”.

    (1)如图1,如果线段的“关联线段”,那么它的“关联角”为______

    (2)如图2,如果.那么的“关联线段”有______(填序号,可多选).

    ①线段;②线段;③线段

    (3)如图3,如果,线段的“关联线段”,那么的取值范围是______.

    (4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.

    2、如图,PAPB是圆的切线,AB为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);

    (2)在(1)的条件下,延长AO交射线PBC点,若AC=4,PA=3,请补全图形,并求⊙O的半径.

    3、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.

    【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CFBE交于点M,设点EF运动时问为t秒.

    (1)【问题提出】如图1,点EF分别在方形ABCD中的边ADAB上,且,连接BECF交于M,求证:.请你先帮小明加以证明.

    (2)如图1,在点EF的运动过程中,点M也随之运动,请直接写出点M的运动路径长     cm.

    (3)如图2,连接CE,在点EF的运动过程中.

    ①试说明点D在△CME的外接圆O上;

    ②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.

    4、如图,AB是ΘO的直径,弦AD平分∠BAC,过点DDEAC,垂足为E

    (1)判断DE所在直线与ΘO的位置关系,并说明理由;

    (2)若AE=4,ED=2,求ΘO的半径.

    5、如图,在中,BO平分,交AC于点O,以点O为圆心,OC长为半径画

    (1)求证:AB的切线;

    (2)若,求的半径.

     

    -参考答案-

    一、单选题

    1、C

    【解析】

    【分析】

    根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.

    【详解】

    解:∵四边形是正方形,

    的交点即为它的外接圆的圆心,

    故选C

    【点睛】

    本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.

    2、C

    【解析】

    【分析】

    连接OAOB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.

    【详解】

    解:如图,连接OAOB,则OA=OB

    ∵四边形ABCD是正方形,

    是等腰直角三角形,

    ∵正方形ABCD的面积是18,

    ,即:

    故选C.

    【点睛】

    本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.

    3、B

    【解析】

    【分析】

    求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.

    【详解】

    解:∵正五边形ABCDE中,

    ∴∠BCD==108°,CB=CD

    ∴∠CBD=∠CDB=(180°-108°)=36°,

    故选:B.

    【点睛】

    本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.

    4、B

    【解析】

    【分析】

    连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.

    【详解】

    解:连接 的直径,

    的切线,

    故选B

    【点睛】

    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.

    5、A

    【解析】

    【分析】

    连接OADE,利用切线的性质和角之间的关系解答即可.

    【详解】

    解:连接OADE,如图,

    AC的切线,OA的半径,

    OAAC

    OAC=90°

    ADE=36°

    AOE=2∠ADE=72°

    C=90°-∠AOE=90°-72°=18°

    故选:A.

    【点睛】

    本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.

    6、B

    【解析】

    【分析】

    连结CO,根据切线性质相切于点,得出OCBC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.

    【详解】

    解:连结CO

    相切于点

    OCBC

    ∴∠COB+∠B=90°,

    ∴∠COB=90°-∠B=90°-40°=50°,

    故选B.

    【点睛】

    本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.

    7、C

    【解析】

    【分析】

    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.

    【详解】

    解:如图所示,连接CP

    OAOB都是圆C的切线,∠AOB=90°,P为切点,

    ∴∠CPO=90°,∠COP=45°,

    ∴∠PCO=∠COP=45°,

    CP=OP=4,

    故选C.

    【点睛】

    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.

    8、D

    【解析】

    【分析】

    如图所示,连接OAOBOC,利用切线定理可知△AOC与△AOB为直角三角形,进而可证明RtAOC≌Rt△AOB,根据三角板的角度可算出∠OAB的度数,借助三角函数求出OB的长度.

    【详解】

    解:如图所示,连接OAOBOC

    ∵三角板的顶角为60°,

    ∴∠CAB=120°,

    ACAB,与扇形分别交于一点,

    ACAB是扇形O所在圆的切线,

    OCACOBAB

    RtAOCRtAOB中,

    RtAOCRtAOB

    ∴∠OAC=∠OAB=60°,

    由题可知AB=7-4=3,

    OB=AB•tan60°=

    ∴直径为

    故选:D.

    【点睛】

    本题考查,圆的切线定理,全等三角形的判定,三角函数,在图中构造适合的辅助线是解决本题的关键.

    9、A

    【解析】

    【分析】

    已知圆O的半径为r,点P到圆心O的距离是d,①当rd时,点P在⊙O内,②当r=d时,点P在⊙O上,③当rd时,点P在⊙O外,根据以上内容判断即可.

    【详解】

    ∵⊙O的半径为3,若PO=2,

    ∴2<3,

    ∴点P与⊙O的位置关系是点P在⊙O内,

    故选:A.

    【点睛】

    本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当rd时,点P在⊙O内,②当r=d时,点P在⊙O上,③当rd时,点P在⊙O外.

    10、C

    【解析】

    【分析】

    连接ODBD,利用三角形外角的性质得到∠BOD=60°,证得△BOD是等边三角形,再利用切线的性质以及含30度角的直角三角形的性质求得BD=2BE=2,即可求解.

    【详解】

    解:连接ODBD

    ∵∠CAB=30°,OD=OA

    ∴∠CAB=∠ODA=30°,

    ∴∠BOD=∠CAB+∠ODA=60°,

    OD=OB

    ∴△BOD是等边三角形,

    DE是⊙O的切线,

    ∴∠ODE=90°,

    ∴∠BDE=30°,

    DEBC于点EBE=1,

    BD=2BE=2,

    OB=BD=2,

    即⊙O的半径为2,

    故选:C.

    【点睛】

    本题考查了切线的性质,含30度角的直角三角形的性质,等边三角形的判定和性质,正确作出辅助线,灵活应用定理是解决问题的关键.

    二、填空题

    1、65

    【解析】

    【分析】

    根据切线的性质得到OAAP,根据直角三角形的两锐角互余计算,得到答案.

    【详解】

    解:∵PA是⊙O的切线,

    OAAP

    ∵∠APO=25°,

    故答案为:65.

    【点睛】

    本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.

    2、5

    【解析】

    【分析】

    直接利用直角三角形斜边上的中线等于斜边的一半即可求解.

    【详解】

    解:根据直角三角形斜边上的中线等于斜边的一半,

    即可知道点到点ABC的距离相等,

    如下图:

    故答案是:5.

    【点睛】

    本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.

    3、相切或相交

    【解析】

    【详解】

    首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案.

    【分析】

    解:∵x2﹣5x+6=0,

    x﹣2)(x﹣3)=0,

    解得:x1=2,x2=3,

    ∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,

    ∴当半径为2时,直线l与圆O的的位置关系是相切,

    当半径为3时,直线l与圆O的的位置关系是相交,

    综上所述,直线l与圆O的的位置关系是相切或相交.

    故答案为:相切或相交.

    【点睛】

    本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.

    4、##

    5、##

    【解析】

    【分析】

    先判断出△ABC是等腰直角三角形,从而连接AD,可得出AD=1,直接代入扇形的面积公式进行运算即可.

    【详解】

    解:∵AB=AC=BC=2,

    AB2+AC2=BC2

    ∴△ABC是等腰直角三角形,

    ∴∠BAC=90°,

    连接AD,则AD=BC=1,

    S扇形AEF=

    故答案为:

    【点睛】

    本题考查了扇形的面积计算、勾股定理的逆定理及等腰直角三角形的性质,直角三角形斜边上的中线等于斜边的一半,难度一般,解答本题的关键是得出AD的长度及∠BAC的度数.

    三、解答题

    1、 (1)

    (2)②,③

    (3)

    (4)

    【解析】

    【分析】

    (1)作OD相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得

    2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;

    3)线段BD绕点O的旋转路线的半径为1的上,当OD相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD的“关联线段”;

    (4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.

    (1)

    解:如图所示:作OD相切,

    此时的角度最小,且

    切点在线段OD上,

    OA的关联角为

    (2)

    解:如图所示:连接

    切点不在线段上,不是的“关联线段”;

    的“关联线段”;

    的“关联线段”;

    (3)

    解:,线段BD绕点O的旋转路线的半径为1的上,

    OD相切时,

    由(1)可得:

    时,线段BD的“关联线段”,

    故答案为:

    (4)

    解:如图所示:当m取最大值时,

    M点运动最小半径是O到过点的直线l的距离是m

    m的最大值为4

    如图所示:当m取小值时,

    开始时存在ME相切,

    ,及点M所在位置,

    综上可得:

    故答案为:

    【点睛】

    题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.

    2、 (1)见解析;

    (2)见解析,的半径为

    【解析】

    【分析】

    (1)过点BBP的垂线,作∠APB的平分线,二线的交点就是圆心;

    (2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.

    (1)

    如图所示,点O即为所求

    (2)

    如图,∵PA是圆的切线,AO是半径,PB是圆的切线,

    ∴∠CAP=90°,PA=PB=3,∠CBO=90°,

    AC=4,

    PC==5,BC=5-3=2,

    设圆的半径为x,则OC=4-x

    解得x=

    故圆的半径为

    【点睛】

    本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.

    3、 (1)见解析

    (2)

    (3)①见解析;②

    【解析】

    【分析】

    (1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即

    (2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;

    (3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点DCME在同一个圆()上;②当AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当AB相切时”是临界情况.如图4,当AB相切(切点为G),连接OG,并延长GOCD于点H,在RtCHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.

    (1)

    四边形是正方形,

    的运动速度都是2cm/s,

    (2)

    ∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;

    如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长

    故答案为:

    (3)

    ①如图3.由前面结论可知:

    ∴△CME的外接圆的圆心O是斜边CE的中点,

    RtCDE中,OCE的中点.

    ∴点DCME在同一个圆()上,

    即点D在△CME的外接圆上;.

    如图4,当AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当AB相切时”是临界情况.

    如图4,当AB相切(切点为G),连接OG,并延长GOCD于点H

    AB相切,

    又∵

    的半径为R.由题意得:

    RtCHO中,,解得

    ,即

    ∴如图5,当时,与正方形的各边共有6个交点.

    【点睛】

    本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.

    4、 (1)相切,理由见解析

    (2)

    【解析】

    【分析】

    (1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;

    (2)连接BD,根据勾股定理得到AD=2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.

    (1)

    解:所在直线与相切.

    理由:连接

    平分

    是半径,

    所在直线与相切.

    (2)

    解:连接

    的直径,

    又∵

    的半径为

    【点睛】

    本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.

    5、 (1)见解析

    (2)2.4.

    【解析】

    【分析】

    (1)过OODABAB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;

    (2)设圆O的半径为r,即OC=r,由BC=3r,由勾股定理求得AD=AB=3r+根据方程求解即可.

    (1)

    如图所示:过OODABAB于点D

    OCBC,且BO平分∠ABC

    OD=OC

    OC是圆O的半径

    AB与圆O相切.

    (2)

    设圆O的半径为r,即OC=r

    OCBC,且OC是圆O的半径

    BC是圆O的切线,

    AB是圆O的切线,

    BD=BC=3r

    中,

    中,

    整理得,

    解得,(不合题意,舍去)

    的半径为2.4

    【点睛】

    此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.

     

    相关试卷

    2020-2021学年第29章 直线与圆的位置关系综合与测试精品达标测试: 这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品达标测试,共35页。试卷主要包含了下面四个结论正确的是,如图,,如图,PA等内容,欢迎下载使用。

    2021学年第29章 直线与圆的位置关系综合与测试优秀测试题: 这是一份2021学年第29章 直线与圆的位置关系综合与测试优秀测试题,共29页。试卷主要包含了已知M,将一把直尺等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试当堂检测题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试当堂检测题,共28页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map