![精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系难点解析试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12721710/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系难点解析试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12721710/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系难点解析试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12721710/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共30页。试卷主要包含了下列说法正确的是,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,中,,,点O是的内心.则等于( )A.124° B.118° C.112° D.62°2、如图所示,在的网格中,A、B、D、O均在格点上,则点O是△ABD的( )A.外心 B.重心 C.中心 D.内心3、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )A.12 B.14 C.16 D.184、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )A.50° B.55° C.65° D.75°5、下列说法正确的是( )A.三点确定一个圆 B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形6、已知⊙O的半径为4,,则点A在( )A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定7、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是( )A.30° B.36° C.60° D.72°8、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外9、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )A. B. C. D.10、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是( )A.0 B.1 C.2 D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:⊙O(纸片),其半径为.求作:一个正方形,使其面积等于⊙O的面积.作法:①如图1,取⊙O的直径,作射线,过点作的垂线;②如图2,以点为圆心,为半径画弧交直线于点;③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;④取的中点,以点为圆心,为半径画半圆,交射线于点;⑤以为边作正方形.正方形即为所求.根据上述作图步骤,完成下列填空:(1)由①可知,直线为⊙O的切线,其依据是________________________________.(2)由②③可知,,,则_____________,____________(用含的代数式表示).(3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.2、如图,已知正方形ABCD和正△EGF都内接于⊙O,当EF∥BC时,的度数为 _____.3、如图,半圆O的直径,在中,,,.半圆O以2cm/s的速度从左向右运动,当圆心O运动到点B时停止,点D、E始终在直线BC上.设运动时间为(s),运动开始时,半圆O在的左侧,.当______时,的一边所在直线与半圆O所在的圆相切.4、正六边形的边心距与半径的比值为_______.5、如图,在中,,平分,平分,,交于点,cm,cm,cm,则的面积为_______cm2.三、解答题(5小题,每小题10分,共计50分)1、如图,是的切线,点在上,与相交于,是的直径,连接,若.(1)求证:平分;(2)当,时,求的半径长.2、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.(1)求证:DM是的切线;(2)求证:;(3)若,,求的半径.3、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.(1)求证:是的切线;(2)若,,求半径的长.4、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.(1)求证:;(2)求证:AF是⊙O的切线.5、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.(1)求证:AB是的切线;(2)若,,求的半径. -参考答案-一、单选题1、B【解析】【分析】根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.【详解】解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.故选B.【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2、A【解析】【分析】根据网格的特点,勾股定理求得,进而即可判断点O是△ABD的外心【详解】解:∵∴O是△ABD的外心故选A【点睛】本题考查了三角形的外心的判定,勾股定理与网格,理解三角形的外心的定义是解题的关键.三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等.3、B【解析】【分析】⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.【详解】解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,则∠CDI=∠C=∠CFI=90°,ID=IF=1,∴四边形CDIF是正方形,∴CD=CF=1,由切线长定理得:AD=AE,BE=BF,CF=CD,∵直角三角形的外接圆半径为3,内切圆半径为1,∴AB=6=AE+BE=BF+AD,即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,故选:B.【点睛】本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.4、C【解析】【分析】首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.【详解】解:∵BD是切线,∴BD⊥AB,∴∠ABD=90°,∵∠BOC=50°,∴∠A=∠BOC=25°,∴∠D=90°﹣∠A=65°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.5、B【解析】【分析】根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.【详解】解:A、不在同一直线上的三点确定一个圆,故错误;B、任何三角形有且只有一个内切圆,正确;C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、边数是偶数的正多边形一定是中心对称图形,故错误;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6、C【解析】【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,∴d>r,∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.7、B【解析】【分析】求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵正五边形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故选:B.【点睛】本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.8、D【解析】【分析】如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.【详解】解:如图所示,连接DP,CP,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AP=3,AB=8,∴BP=AB-AP=5,∵,∴PB=PD,∴,∴点C在圆P外,点B在圆P上,故选D.【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.9、A【解析】【分析】连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.【详解】解:连结OC,∵以边上一点为圆心作,恰与边,分别相切于点A, ,∴DC=AC,OC平分∠ACD,∵,,∴∠ACD=90°-∠B=60°,∴∠OCD=∠OCA==30°,在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,∴OD=OA=1,DC=AC=,∴,,∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,∴,S阴影=.故选择A.【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.10、A【解析】【分析】圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.【详解】解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,∴,∴直线l与相离,∴直线l与⊙O的公共点的个数为0,故选A.【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.二、填空题1、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3) 【解析】【分析】(1)根据切线的定义判断即可.(2)由=AC+,计算即可;根据计算即可.(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.【详解】解:(1)∵⊙O的直径,作射线,过点作的垂线,∴经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,==πr,∴=AC+=r+πr,∴=;∵,∴MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定理,得==; 故答案为:.【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.2、【解析】【分析】连接,并延长交于点,连接,先根据圆内接正多边形的性质可得,再根据圆周角定理可得,然后根据直角三角形的性质可得,从而可得,于是可得答案.【详解】解:如图,连接,并延长交于点,连接,正方形和正都内接于,,由圆周角定理得:,,,,,则的度数为,故答案为:.【点睛】本题考查了圆周角定理、圆内接正多边形的性质等知识点,熟练掌握圆内接正多边形的性质是解题关键.3、1或4或7【解析】【分析】的一边所在直线与半圆O所在的圆相切有三种情况:当点C与点E重合、点O与点C重合以及点D与点C重合,分别找出点O运动的路程,即可求出答案.【详解】如图,当点C与点E重合时,AC与半圆O所在的圆相切,∵,∴,∴,即点O运动了2cm,∴,当AB与半圆O所在的圆相切时,过点C作交于点F,∵,,∴,∴,即点O与点C重合,∴点O运动了8cm,∴,当点C与点D重合时,AC与半圆O所在的圆相切,,即点O运动了14cm,∴,故答案为:1或4或7.【点睛】考查了直线与圆的位置关系和点与圆的位置关系.并能根据圆心到直线的距离来判断直线与圆的位置关系.4、【解析】【分析】设正六边形的半径是r,由正六边形的内切圆的半径是正六边形的边心距,因而是r,计算比值即可.【详解】解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,如上图所示,内切圆半径=,因而是r,则可知正六边形的边心距与半径的比值为.【点睛】本题考查正多边形的边心距与内接圆的半径之间的关系,搞清正多边形内接圆与正多边形之间的关系是解决本题的关键.5、1.5【解析】【分析】根据平分,平分,,交于点,得出点是的内心,并画出的内切圆,再根据切线长定理列出方程组,求出的边上的高,进而求出其面积.【详解】解:平分,平分,,交于点,点是的内心.如图,画出的内切圆,与、、分别相切于点、、,且连接,设,,,得方程组:解得:,,的面积.故答案为:1.5.【点睛】此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.三、解答题1、 (1)见解析(2)的半径长为.【解析】【分析】(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径(1)证明:如图,连接,∵是的切线,∴,∵,∴,∴,∵,∴,∴,即平分;(2)解:如图,连接,在中,,,由勾股定理得:,∵是的直径,∴,∴,∵,∴,∴,即,解得:,∴的半径长为.【点睛】本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.2、 (1)见解析(2)见解析(3)⊙O的半径为5.【解析】【分析】(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;(3)根据垂径定理和勾股定理即可求出结果.(1)证明:连接OD交BC于H,如图,∵点E是△ABC的内心,∴AD平分∠BAC,即∠BAD=∠CAD,∴,∴OD⊥BC,BH=CH,∵DM∥BC,∴OD⊥DM,∴DM是⊙O的切线;(2)证明:∵点E是△ABC的内心,∴∠ABE=∠CBE,∵,∴∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,即∠BED=∠DBE,∴BD=DE;(3)解:设⊙O的半径为r,连接OD,OB,如图,由(1)得OD⊥BC,BH=CH,∵BC=8,∴BH=CH=4,∵DE=2,BD=DE,∴BD=2,在Rt△BHD中,BD2=BH2+HD2,∴(2)2=42+HD2,解得:HD=2,在Rt△BHO中,r2=BH2+(r-2)2,解得:r=5.∴⊙O的半径为5.【点睛】本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.3、 (1)证明见解析(2)⊙O半径的长为【解析】【分析】(1)根据角度的数量关系,可得,即,进而可证是的切线;(2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.(1)证明:∵是的直径∴∴∵∴∴, ∴∴是的切线;(2)解:∵,∴∵∴∵,∴∴, ∵∴∴,在中,,即∴∴半径长为.【点睛】本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.4、 (1)见解析;(2)见解析【解析】【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.(1)解:∵,∴,又∵,∴,∴ ;(2)解:如图,连接OA, ∵,∴,∴,∵,∴,∴,∵已知,∴,∴,∴,∴,∴AF为⊙O的切线.【点睛】本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.5、 (1)见解析(2)2.4.【解析】【分析】(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.(1)如图所示:过O作OD⊥AB交AB于点D.∵OC⊥BC,且BO平分∠ABC,∴OD=OC,∵OC是圆O的半径∴AB与圆O相切.(2)设圆O的半径为r,即OC=r,∵∴ ∴ ∵OC⊥BC,且OC是圆O的半径∴BC是圆O的切线,又AB是圆O的切线,∴BD=BC=3r在中, ∴ ∴ 在中, ∴ 整理得, 解得,,(不合题意,舍去)∴的半径为2.4【点睛】此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
相关试卷
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀精练,共30页。试卷主要包含了在中,,,给出条件等内容,欢迎下载使用。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题,共37页。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题,共38页。试卷主要包含了在中,,,给出条件,将一把直尺等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)