终身会员
搜索
    上传资料 赚现金
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习练习题(精选含解析)
    立即下载
    加入资料篮
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习练习题(精选含解析)01
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习练习题(精选含解析)02
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习练习题(精选含解析)03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业

    展开
    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共32页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。

    九年级数学下册第二十九章直线与圆的位置关系课时练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(      

    A.19° B.38° C.52° D.76°

    2、如图,PAPB是⊙O的切线,AB是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(    

    A.70° B.50° C.20° D.40°

    3、如图,在矩形ABCD中,,点O在对角线BD上,以OB为半径作BC于点E,连接DE;若DE的切线,此时的半径为(      

    A. B. C. D.

    4、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是(      

    A.相离 B.相切 C.相交 D.相交或相切

    5、如图,从⊙O外一点P引圆的两条切线PAPB,切点分别是AB,若∠APB=60°,PA=5,则弦AB的长是(  )

    A. B. C.5 D.5

    6、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是(      

    A.点P在⊙O B.点P在⊙O C.点P在⊙O D.无法判断

    7、如图所示,⊙O的半径为5,点O到直线l的距离为7,P是直线l上的一个动点,PQ与⊙O相切于点Q.则PQ的最小值为(      

    A. B. C.2 D.2

    8、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则(      

    A.不能构成三角形 B.这个三角形是等边三角形

    C.这个三角形是直角三角形 D.这个三角形是等腰三角形

    9、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是(  )

    A.30° B.36° C.60° D.72°

    10、如图,AB是⊙O的直径,点DAB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于(      

    A.20° B.30° C.50° D.40°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,已知的半径为1,圆心在抛物线上运动,当轴相切时,圆心的横坐标为______.

    2、如图,∠1是正五边形两条对角线的夹角,则∠1=_______度.

    3、如图,五边形是⊙的内接正五边形,则的度数是____.

    4、如图,x轴交于两点,,点Py轴上的一个动点,PD于点D,则ABD的面积的最大值是________;线段PD的最小值是________.

    5、如图,在中,,以点为圆心,2为半径的相切于点,交于点,交于点,点上一点,且,则图中阴影部分的面积是______.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在中,平分于点D,点O上,以点O为圆心,为半径的圆恰好经过点D,分别交于点EF

    (1)试判断直线的位置关系,并说明理由;

    (2)若,求阴影部分的面积(结果保留).

    2、如图,AB是ΘO的直径,弦AD平分∠BAC,过点DDEAC,垂足为E

    (1)判断DE所在直线与ΘO的位置关系,并说明理由;

    (2)若AE=4,ED=2,求ΘO的半径.

    3、如图,直线MN交⊙OAB两点,AC是直径,AD平分∠CAM交⊙OD,过DDEMNE

    (1)求证:DE是⊙O的切线;

    (2)若DE=8,AE=6,求⊙O的半径.

    4、如图,的直径,是圆上两点,且有,连结,作的延长线于点

    (1)求证:的切线;

    (2)若,求阴影部分的面积.(结果保留

    5、如图,中,

    (1)用直尺和圆规作,使圆心在边上,且所在直线相切(不写作法,保留作图痕迹);

    (2)在(1)的条件下,再从以下两个条件①“的周长为12cm;②”中选择一个作为条件,并求的半径

     

    -参考答案-

    一、单选题

    1、B

    【解析】

    【分析】

    连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.

    【详解】

    解:连接 的直径,

    的切线,

    故选B

    【点睛】

    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.

    2、D

    【解析】

    【分析】

    首先连接OAOB,由PAPB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.

    【详解】

    解:连接OAOB

    PAPB为⊙O的切线,

    ∴∠OAP=∠OBP=90°,

    ∵∠ACB=70°,

    ∴∠AOB=2∠P=140°,

    ∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.

    故选:D

    【点睛】

    此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.

    3、D

    【解析】

    【分析】

    半径为r,如解图,过点O,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据的切线,利用勾股定理,解方程即可.

    【详解】

    解:设半径为r,如解图,过点O

    OB=OE

    ∵四边形ABCD为矩形,

    ∴∠C=90°=∠OFB,∠OBF=∠DBC

    中,,即

    又∵的切线,

    解得或0(不合题意舍去).

    故选D.

    【点睛】

    本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.

    4、B

    【解析】

    【分析】

    圆的半径为 圆心O到直线l的距离为时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.

    【详解】

    解:O的直径为10cm,圆心O到直线l的距离为5cm,

       O的半径等于圆心O到直线l的距离,

    直线l与⊙O的位置关系为相切,

    故选B

    【点睛】

    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.

    5、C

    【解析】

    【分析】

    先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.

    【详解】

    解:∵PAPB为⊙O的切线,

    PA=PB

    ∵∠APB=60°,

    ∴△APB为等边三角形,

    AB=PA=5.

    故选:C.

    【点睛】

    本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.

    6、A

    【解析】

    【分析】

    已知圆O的半径为r,点P到圆心O的距离是d,①当rd时,点P在⊙O内,②当r=d时,点P在⊙O上,③当rd时,点P在⊙O外,根据以上内容判断即可.

    【详解】

    ∵⊙O的半径为3,若PO=2,

    ∴2<3,

    ∴点P与⊙O的位置关系是点P在⊙O内,

    故选:A.

    【点睛】

    本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当rd时,点P在⊙O内,②当r=d时,点P在⊙O上,③当rd时,点P在⊙O外.

    7、C

    【解析】

    【分析】

    由切线的性质可知OQPQ,在RtOPQ中,OQ=5,则可知当OP最小时,PQ有最小值,当OPl时,OP最小,利用勾股定理可求得PQ的最小值.

    【详解】

    PQ与⊙O相切于点Q

    OQPQ

    PQ2=OP2-OQ2=OP2-52=OP2-25,

    ∴当OP最小时,PQ有最小值,

    ∵点O到直线l的距离为7,

    OP的最小值为7,

    PQ的最小值=

    故选:C.

    【点睛】

    本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键.

    8、C

    【解析】

    【分析】

    分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.

    【详解】

    如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OCOEOGOA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,

    OC=OAcos60°=OE= OAcos45°=OG= OAcos30°=

    ∴这个三角形是直角三角形,

    故选C.

    【点睛】

    本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.

    9、B

    【解析】

    【分析】

    求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.

    【详解】

    解:∵正五边形ABCDE中,

    ∴∠BCD==108°,CB=CD

    ∴∠CBD=∠CDB=(180°-108°)=36°,

    故选:B.

    【点睛】

    本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.

    10、C

    【解析】

    【分析】

    连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.

    【详解】

    解:连接OC

    DC切⊙O于点C

    ∴∠OCD=90°,

    ∵∠A=20°,

    ∴∠OCA=20°,

    ∴∠DOC=40°,

    ∴∠D=90°-40°=50°.

    故选:C.

    【点睛】

    本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.

    二、填空题

    1、2或或0

    【解析】

    【分析】

    当⊙Px轴相切时,圆心P的纵坐标为1或-1,根据圆心P在抛物线上,所以当y为±1时,可以求出点P的横坐标.

    【详解】

    解:当y=1时,有1=-x2+1,x=0.

    y=-1时,有-1=-x2+1,x=

    故答案是:2或或0.

    【点睛】

    本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.

    2、72

    【解析】

    【分析】

    根据多边形的内角和定理及正多边形的性质即可求得结果.

    【详解】

    正五边形的每个内角为

    ∵多边形为正五边形,即AB=BC=CD,如图

    ∴△ABC、△BCD均为等腰三角形,且∠ABC=∠BCD=108°

    ∴∠1=∠BCA+∠CBD=72°

    故答案为:72

    【点睛】

    本题考查了正多边形的性质及多边形的内角和定理,三角形外角性质,等腰三角形性质等知识,掌握正多边形的性质及多边形内角和定理是本题的关键.

    3、

    【解析】

    【分析】

    根据圆内接正五边形的定义求出∠COD,利用三角形内角和求出答案.

    【详解】

    解:∵五边形是⊙的内接正五边形,

    ∴∠COD=

    OC=OD

    =

    故答案为:

    【点睛】

    此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键.

    4、     ##0.5    

    【解析】

    【分析】

    根据题中点的坐标可得圆的直径,半径为1,分析AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.

    【详解】

    解:如图所示:当点P到如图位置时,的面积最大,

    圆的直径,半径为1

    AB定长为底,点D在圆上,高最大为圆的半径,如图所示:

    此时面积的最大值为:

    如图所示:连接AP

    PD于点D

    设点

    中,

    中,

    时,PD取得最小值,

    最小值为

    故答案为:①;②

    【点睛】

    题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.

    5、

    【解析】

    【分析】

    连接AD,由圆周角定理可求出,即可利用扇形面积公式求出.由切线的性质可知,即可利用三角形面积公式求出.最后根据,即可求出结果.

    【详解】

    如图,连接AD

    BC是⊙O切线,且切点为D

    故答案为:

    【点睛】

    本题考查圆周角定理,切线的性质,扇形的面积公式.连接常用的辅助线是解答本题的关键.

    三、解答题

    1、 (1)BC与⊙O相切,理由见详解

    (2)

    【解析】

    【分析】

    (1)根据题意先证明ODAC,即可证得∠ODB=90°,从而证得BC是圆的切线;

    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.

    (1)

    解: BC与⊙O相切.

    证明:∵AD是∠BAC的平分线,

    ∴∠BAD=∠CAD

    又∵OD=OA

    ∴∠OAD=∠ODA

    ∴∠CAD=∠ODA

    ODAC

    ∴∠ODB=∠C=90°,即ODBC

    又∵BC过半径OD的外端点D

    BC与⊙O相切;

    (2)

    ,∠ODB=90°,

    RtOBD中,

    由勾股定理得:

    SOBD= ODBD= S扇形ODF=

    ∴阴影部分的面积=

    【点睛】

    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.

    2、 (1)相切,理由见解析

    (2)

    【解析】

    【分析】

    (1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;

    (2)连接BD,根据勾股定理得到AD=2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.

    (1)

    解:所在直线与相切.

    理由:连接

    平分

    是半径,

    所在直线与相切.

    (2)

    解:连接

    的直径,

    又∵

    的半径为

    【点睛】

    本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.

    3、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DOMN,根据平行线的性质和切线的判定即可证的结论;

    (2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.

    (1)

    证明:连接OD

    OAOD

    ∴∠OAD=∠ODA

    AD平分∠CAM,∠OAD=∠DAE

    ∴∠ODA=∠DAE

    DOMN

    DEMN

    DEOD

    D在⊙O上,  

    DE是⊙O的切线;

    (2)

    解:∵∠AED=90°,DE=8,AE=6,

    AD=10,

    连接CD,∵AC是⊙O的直径,

    ∴∠ADC=∠AED=90°,

    ∵∠CAD=∠DAE

    ∴△ACD∽△ADE

    ,即

    AC

    ∴⊙O的半径是

    【点睛】

    本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.

    4、 (1)见解析

    (2)

    【解析】

    【分析】

    1)要证明DEO的切线,所以连接OD,只要求出∠ODE90°即可解答;

    2)连接BD,利用RtADB的面积加上弓形面积即可求出阴影部分的面积.

    (1)

    证明:连接OD

    ∴∠CAD=∠BAD

    OAOD

    ∴∠OAD=∠ODA

    ∴∠CAD=∠ODA

    AEOD

    ∴∠E+ODE90°,

    DEAC

    ∴∠E90°,

    ∴∠ODE180°﹣∠E90°,

    OD是圆O的半径,

    DEO的切线;

    (2)

    连接BD

    ABO的直径,

    ∴∠ADB90°,

    ∵∠ADE60°,∠E90°,

    ∴∠CAD90°﹣∠ADE30°,

    ∴∠DAB=∠CAD30°,

    AB2BD

    BD2BA=4

    ODOB2

    ∴△ODB是等边三角形,

    ∴∠DOB60°,

    ∴△ADB的面积=ADDB

    ×2×2

    2

    OAOB

    ∴△DOB的面积=ADB的面积=

    ∴阴影部分的面积为:

    ADB的面积+扇形DOB的面积﹣△DOB的面积

    2

    ∴阴影部分的面积为:

    【点睛】

    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.

    5、 (1)见解析

    (2)cm

    【解析】

    【分析】

    (1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;

    (2)记⊙OAB的切点为E,连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r,在RtAOE中,由AO2=AE2+OE2列出关于r的方程求解即可.

    ①设AC=3xAB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;

    ②设AC=3xAB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;

    (1)

    解:如图,

    (2)

    解:如图,设相切于点.连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r

    ①∵,∴设AC=3xAB=5x

    BC==4x

    的周长为12cm

    ∴3x+4x+5x=12,

    x=1,

    AC=3,AB=5,

    ∵⊙O 与 ABBC 所在直线相切

    BE=BC=4,

    AE=AB-BE=5-4=1,AO=3-r

    RtAOE中,

    AO2=AE2+OE2

    ∴(3-r)2=12+r2

    r=

    ②∵,∴设AC=3xAB=5x

    BC==4x

    ∴4x=12,

    x=1,

    AC=3,AB=5,

    ∵⊙OABBC 所在直线相切

    ∴BE=BC=4,

    AE=AB-BE=5-4=1,AO=3-r

    RtAOE中,

    AO2=AE2+OE2

    ∴(3-r)2=12+r2

    r=

    即⊙O的半径cm

    【点睛】

    本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.

     

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀当堂达标检测题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀当堂达标检测题,共38页。试卷主要包含了如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题,共33页。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题,共35页。试卷主要包含了如图,A,下列四个命题中,真命题是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map