开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系重点解析试卷(精选)

    2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系重点解析试卷(精选)第1页
    2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系重点解析试卷(精选)第2页
    2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系重点解析试卷(精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后练习题

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后练习题,共29页。试卷主要包含了如图所示,在的网格中,A,如图,FA等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(       ).A.20° B.25° C.30° D.40°2、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为(        A.10 B.11 C.12 D.133、下面四个结论正确的是(       A.度数相等的弧是等弧 B.三点确定一个圆C.在同圆或等圆中,圆心角是圆周角的2倍 D.三角形的外心到三角形的三个顶点的距离相等4、如图所示,在的网格中,ABDO均在格点上,则点O是△ABD的(       A.外心 B.重心 C.中心 D.内心5、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为(       A.1 B.2 C.3 D.46、如图,若的半径为R,则它的外切正六边形的边长为(       A. B. C. D.7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(       )cm.A.3π B.6π C.12π              D.18π8、如图,FAFB分别与⊙O相切于AB两点,点C为劣弧AB上一点,过点C的切线分别交FAFBDE两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为(  )A. B.2 C.2 D.39、如图,⊙O的半径为2PAPBCD分别切⊙O于点ABECD分别交PAPB于点CD,且PEO三点共线.若∠P=60°,则CD的长为(  )A.4 B.2 C.3 D.610、如图,是等边三角形的外接圆,若的半径为2,则的面积为(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABCD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.2、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.3、一个圆内接正多边形的一条边所对的圆心角是,则该正多边形边数是__________.4、Rt的两条直角边分别是一元二次方程的两根,则的外接圆半径为_____.5、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,∠ACB=90°,ACBCO点在ABC内部,⊙O经过BC两点且交AB于点D,连接CO并延长交线段AB于点G,以GDGC为邻边作平行四边形GDEC(1)求证:直线DE是⊙O的切线;(2)若DE=7,CE=5,求⊙O的半径.2、如图,的直径,是圆上两点,且有,连结,作的延长线于点(1)求证:的切线;(2)若,求阴影部分的面积.(结果保留3、如图,AB是ΘO的直径,弦AD平分∠BAC,过点DDEAC,垂足为E(1)判断DE所在直线与ΘO的位置关系,并说明理由;(2)若AE=4,ED=2,求ΘO的半径.4、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°     (1)试说明:直线为⊙P的切线.(2)若∠B=30°,AD=2,求CD的长.5、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CED,延长COOB,连接ADABABO的切线.(1)求证:ADO的切线.(2)若O的半径为4,,求平行四边形OAEC的面积. -参考答案-一、单选题1、B【解析】【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,PA是⊙O的切线,OAAP∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,OA=OB∴∠B=∠OAB∵∠AOP=∠B+∠OAB∴∠B=∠AOP=×50°=25°.故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2、A【解析】【分析】作正多边形的外接圆,连接 AOBO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AOBO∴∠AOB=2∠ADB=36°,∴这个正多边形的边数为=10.故选:A.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.3、D【解析】【分析】根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.【详解】解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;B、不在同一直线上的三点确定一个圆,故错误;C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;D、三角形的外心到三角形的三个顶点的距离相等,故正确;故选D【点睛】本题考查了圆的有关的概念,属于基础知识,必须掌握.4、A【解析】【分析】根据网格的特点,勾股定理求得,进而即可判断点O是△ABD的外心【详解】解:∵O是△ABD的外心故选A【点睛】本题考查了三角形的外心的判定,勾股定理与网格,理解三角形的外心的定义是解题的关键.三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等.5、D【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:∵点A为⊙O外的一点,且⊙O的半径为3,∴线段OA的长度>3.故选:D.【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.6、B【解析】【分析】如图连结OAOBOG,根据六边形ABCDEF为圆外切正六边形,得出∠AOB=60°△AOB为等边三角形,根据点G为切点,可得OGAB,可得OG平分∠AOB,得出∠AOC=,根据锐角三角函数求解即可.【详解】解:如图连结OAOBOG∵六边形ABCDEF为圆外切正六边形,∴∠AOB=360°÷6=60°,AOB为等边三角形,∵点G为切点,OGABOG平分∠AOB∴∠AOC=∴cos30°=故选择B.【点睛】本题考查圆与外切正六边形性质,等边三角形性质,锐角三角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键.7、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、C【解析】【分析】根据切线长定理可得,,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.【详解】解:FAFB分别与⊙O相切于AB两点,过点C的切线分别交FAFBDE两点,则:∵∠F=60°,为等边三角形,∵△FDE的周长为12,即,即,如下图:,则,由勾股定理可得:解得故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.9、A【解析】【分析】,先证明,得出,得出,过点,在中,设,则,利用勾股定理求出,即可求解.【详解】解:连接PAPB,分别切⊙O于点AB是等边三角形,过点,如下图根据等腰三角形的性质,的中点,中,,则解得:故选:A.【点睛】本题考查了圆的切线,三角形全等、等腰三角形、勾股定理,解题的关键是添加适当的辅助线,掌握切线的性质来求解.10、D【解析】【分析】过点OOHBC于点H,根据等边三角形的性质即可求出OHBH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.【详解】解:过点OOHBC于点H,连接AOBO∵△ABC是等边三角形,∴∠ABC=60°,O为三角形外心,∴∠OAH=30°,OH=OB=1,BH=AH=-AO+OH=2+1=3 故选:D【点睛】本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.二、填空题1、15##十五【解析】【分析】根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.【详解】解:如图,设正多边形的外接圆为⊙O,连接OAOB∵∠ADB=12°,∴∠AOB=2∠ADB=24°,而360°÷24°=15,∴这个正多边形为正十五边形,故答案为:15.【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.2、【解析】【分析】如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.【详解】解:如图, ∵四边形CDEF为正方形,∴∠D=90°,CD=DECE是直径,∠ECD=45°,根据题意得:AB=2.5,即此斛底面的正方形的边长为 尺.故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.3、【解析】【分析】根据正多边形的中心角=计算即可.【详解】解:设正多边形的边数为n由题意得,60°,n6故答案为:六.【点睛】本题考查正多边形和圆,解题的关键是记住正多边形的中心角=4、2.5##【解析】【分析】根据题意先解一元二次方程,进而根据直角三角形的外接圆的半径等于斜边的一边,即可求得答案.【详解】解:解得Rt的两条直角边分别为3,4,斜边长为直角三角形的外接圆的圆心在斜边上,且为斜边的中点,的外接圆半径为【点睛】本题考查的是三角形的外接圆与外心,熟知直角三角形的外心是斜边的中点是解答此题的关键.5、3cm【解析】【分析】根据点与圆的位置关系得出:点P在⊙O上,则即可得出答案.【详解】∵⊙O的直径为6cm,∴⊙O的半径为3cm,∵点P在⊙O上,故答案为:3cm.【点睛】本题考查点与圆的位置关系:点P在⊙O外,则,点P在⊙O上,则,点P在⊙O内,三、解答题1、 (1)见解析(2)4【解析】【分析】1)连接OD,根据题意和平行四边形的性质可得DECG,可得ODDE,即可求解;2)设O的半径为r,因为∠GOD90°,根据勾股定理可求解r,当r2时,OG5,此时点GO外,不合题意,舍去,可求解.(1)证明:连接OD ∵∠ACB90°,ACBC∴∠ABC45°,∴∠COD2ABC90°,∵四边形GDEC是平行四边形,DECG∴∠ODE+COD180°,∴∠ODE90°,即ODDEOD是半径,∴直线DEO的切线;(2)解:设O的半径为r∵四边形GDEC是平行四边形,CGDE7DGCE5∵∠GOD90°,OD2+OG2DG2,即r2+7r252解得:r13r24r3时,OG43,此时点GO外,不合题意,舍去,r4,即O的半径4【点睛】本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.2、 (1)见解析(2)【解析】【分析】1)要证明DEO的切线,所以连接OD,只要求出∠ODE90°即可解答;2)连接BD,利用RtADB的面积加上弓形面积即可求出阴影部分的面积.(1)证明:连接OD ∴∠CAD=∠BADOAOD∴∠OAD=∠ODA∴∠CAD=∠ODAAEOD∴∠E+ODE90°,DEAC∴∠E90°,∴∠ODE180°﹣∠E90°,OD是圆O的半径,DEO的切线;(2)连接BD ABO的直径,∴∠ADB90°,∵∠ADE60°,∠E90°,∴∠CAD90°﹣∠ADE30°,∴∠DAB=∠CAD30°,AB2BDBD2BA=4ODOB2∴△ODB是等边三角形,∴∠DOB60°,∴△ADB的面积=ADDB×2×22OAOB∴△DOB的面积=ADB的面积=∴阴影部分的面积为:ADB的面积+扇形DOB的面积﹣△DOB的面积2∴阴影部分的面积为:【点睛】本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.3、 (1)相切,理由见解析(2)【解析】【分析】(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;(2)连接BD,根据勾股定理得到AD=2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.(1)解:所在直线与相切.理由:连接平分是半径,所在直线与相切.(2)解:连接的直径,又∵的半径为【点睛】本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.4、 (1)见解析(2)【解析】【分析】(1)连接PC,则∠APC=2∠B,可证PCDA,证得PCCD,则结论得证;(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.(1)连接PCPCPB∴∠B=∠PCB∴∠APC=2∠B∵2∠B+∠DAB=180°,∴∠DAP+∠APC=180°,PCDA∵∠ADC=90°,∴∠DCP=90°,DCCP∴直线CD为⊙P的切线;(2)连接AC∵∠B=30°,∴∠CPA=2∠B=60°,AP=CP,∠CPA=60°,∴△APC为等边三角形,∵∠DCP=90°,∴∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,AC=2AD=4,CD=【点睛】本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.5、 (1)见解析(2)32【解析】【分析】(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明ADO的切线;(2)根据平行四边形OAEC的面积等于2倍即可求解.(1)证明:连接OD∵四边形OAEC是平行四边形,又∵AB相切于点B又∵OD的半径,AD的切线.(2)RtAOD中,∴平行四边形OABC的面积是【点睛】本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键. 

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共32页。试卷主要包含了在中,,,给出条件,下列说法正确的是等内容,欢迎下载使用。

    2021学年第29章 直线与圆的位置关系综合与测试综合训练题:

    这是一份2021学年第29章 直线与圆的位置关系综合与测试综合训练题,共30页。试卷主要包含了下列四个命题中,真命题是,如图,PA等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习,共35页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map