终身会员
搜索
    上传资料 赚现金
    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系定向攻克试题(含答案及详细解析)
    立即下载
    加入资料篮
    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系定向攻克试题(含答案及详细解析)01
    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系定向攻克试题(含答案及详细解析)02
    2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系定向攻克试题(含答案及详细解析)03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第29章 直线与圆的位置关系综合与测试同步测试题

    展开
    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试同步测试题,共32页。试卷主要包含了将一把直尺等内容,欢迎下载使用。

    九年级数学下册第二十九章直线与圆的位置关系定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).

    A. B. C. D.
    2、已知⊙O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与⊙O的位置关系是( )
    A.点A在⊙O内 ; B.点A在⊙O上;
    C.点A在⊙O外; D.不能确定.
    3、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )

    A. B. C. D.
    4、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )

    A. B.四边形EFGH是菱形
    C. D.
    5、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是(  )

    A.2,2 B.4,4 C.4,2 D.4,
    6、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    7、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    8、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )

    A.54° B.36° C.32° D.27°
    9、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm
    10、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 ( )
    A.3 B.5 C.6 D.10
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在⊙O中,AB是⊙O的内接正六边形的一边,BC是⊙O的内接正十边形的一边,则∠ABC=______°.

    2、如图,已知的半径为1,圆心在抛物线上运动,当与轴相切时,圆心的横坐标为______.

    3、如图,AB,BC,CD分别与⊙O相切于点E、F、G三点,且AB∥CD,BO=6,CO=8,则BE+GC的长为_____.

    4、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.

    5、如图,点O和点I分别是△ABC的外心和内心,若∠BOC=130°,则∠BIC=______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.

    (1)求证:;
    (2)求证:AF是⊙O的切线.
    2、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.

    (1)求证:DE是⊙O的切线;
    (2)若DE=8,AE=6,求⊙O的半径.
    3、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.

    (1)求证:直线DE是⊙O的切线;
    (2)若DE=7,CE=5,求⊙O的半径.
    4、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.

    (1)求证:AD是O的切线.
    (2)若O的半径为4,,求平行四边形OAEC的面积.
    5、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.

    (1)求证:DM是的切线;
    (2)求证:;
    (3)若,,求的半径.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.
    【详解】
    解:连接、,

    ,的内接正六边形,

    ∴△DOE是等边三角形,
    ∴∠DOM=30°,
    设,则

    解得:,

    根据图可得:,


    故选:D.
    【点睛】
    本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.
    2、C
    【解析】
    【分析】
    要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.
    【详解】
    解:∵⊙O的半径为3cm,OA=6cm,
    ∴d>r,
    ∴点A与⊙O的位置关系是:点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
    3、D
    【解析】
    【分析】
    设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
    【详解】
    解:设半径为r,如解图,过点O作,
    ∵OB=OE,
    ∴,
    ∵四边形ABCD为矩形,
    ∴∠C=90°=∠OFB,∠OBF=∠DBC,
    ∴.
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    在中,,即,
    又∵为的切线,
    ∴,
    ∴,
    解得或0(不合题意舍去).
    故选D.

    【点睛】
    本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
    4、C
    【解析】
    【分析】
    由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
    【详解】
    解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
    ∵AB和AE都是⊙O的切线,点G、H分别是切点,
    ∴AG=AH,∠GAF=∠HAF,
    ∴∠GAF=∠HAF=∠DAE=30°,
    ∴∠BAE=2∠DAE,故A正确,不符合题意;
    延长EF与AB交于点N,如图:

    ∵OF⊥EF,OF是⊙O的半径,
    ∴EF是⊙O的切线,
    ∴HE=EF,NF=NG,
    ∴△ANE是等边三角形,
    ∴FG//HE,FG=HE,∠AEF=60°,
    ∴四边形EFGH是平行四边形,∠FEC=60°,
    又∵HE=EF,
    ∴四边形EFGH是菱形,故B正确,不符合题意;
    ∵AG=AH,∠GAF=∠HAF,
    ∴GH⊥AO,故D正确,不符合题意;
    在Rt△EFC中,∠C=90°,∠FEC=60°,
    ∴∠EFC=30°,
    ∴EF=2CE,
    ∴DE=2CE.
    ∵在Rt△ADE中,∠AED=60°,
    ∴AD=DE,
    ∴AD=2CE,故C错误,符合题意.
    故选C.
    【点睛】
    本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
    5、B
    【解析】
    【分析】
    根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.
    【详解】
    解:如图,

    ∵正六边形的任一内角为120°,
    ∴∠ABD=180°-120°=60°,
    ∴∠BAD=30°,为等边三角形,




    ∴这个正六边形半径R和扳手的开口a的值分别是4,4.
    故选:B.
    【点睛】
    本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.
    6、B
    【解析】
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    7、D
    【解析】
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    8、D
    【解析】
    【分析】
    由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.
    【详解】
    解:∵AB为⊙O的切线,
    ∴∠OAB=90°,
    ∵∠ABO=36°,
    ∴∠AOB=90°﹣∠ABO=54°,
    ∵OA=OD,
    ∴∠ADC=∠OAD,
    ∵∠AOB=∠ADC+∠OAD,
    ∴∠ADC=∠AOB=27°;
    故选:D.
    【点睛】
    本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.
    9、D
    【解析】
    【分析】
    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
    【详解】
    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于

    设半径为r,即OA=OB=AB=r,
    OM=OA•sin∠OAB=,
    ∵圆O的内接正六边形的面积为(cm2),
    ∴△AOB的面积为(cm2),
    即,

    解得r=4,
    故选:D.
    【点睛】
    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
    10、A
    【解析】
    【分析】
    根据直线l和⊙O相交⇔d<r,即可判断.
    【详解】
    解:∵⊙O的半径为5,直线l与⊙O相交,
    ∴圆心D到直线l的距离d的取值范围是0≤d<5,
    故选:A.
    【点睛】
    本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.
    二、填空题
    1、132°
    【解析】
    【分析】
    连接AO、BO、CO,根据AB是⊙O的内接正六边形的一边,可得 , ,从而得到∠ABO=60°,再由BC是⊙O的内接正十边形的一边,可得 ,BO=CO,从而得到,即可求解.
    【详解】
    解:如图,连接AO、BO、CO,

    ∵AB是⊙O的内接正六边形的一边,
    ∴ , ,
    ∴ ,
    ∵BC是⊙O的内接正十边形的一边,
    ∴ ,BO=CO,
    ∴,
    ∴∠ABC=∠ABO+ ∠CBO=60°+72°=132°.
    故答案为:132°
    【点睛】
    本题主要考查了圆的内接多边形的性质,等腰三角形的性质,熟练掌握圆的内接多边形的性质,等腰三角形的性质是解题的关键.
    2、2或或0
    【解析】
    【分析】
    当⊙P与x轴相切时,圆心P的纵坐标为1或-1,根据圆心P在抛物线上,所以当y为±1时,可以求出点P的横坐标.
    【详解】
    解:当y=1时,有1=-x2+1,x=0.
    当y=-1时,有-1=-x2+1,x=.
    故答案是:2或或0.
    【点睛】
    本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.
    3、10
    【解析】
    【分析】
    先由切线长定理得到BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,再证明∠BOC=90°,然后利用勾股定理计算出BC即可.
    【详解】
    ∵AB,BC,CD分别与⊙O相切于点E、F、G三点,
    ∴BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,
    ∴,,
    ∴,
    ∵AB∥CD,
    ∴∠ABC+∠BCD=180°,
    ∴,
    ∴∠BOC=90°,
    在Rt△OBC中,∵BO=6,CO=8,
    ∴,
    ∴BE+CG=10.
    故答案为:10.
    【点睛】
    此题考查了切线长定理、切线的性质、勾股定理以及直角三角形的判定与性质.此题难度适中,正确理解切线长定理是解决本题的关键.
    4、6
    【解析】
    【分析】
    依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;
    【详解】
    设直角三角形中能容纳最大圆的半径为:;
    依据直角三角形的性质:可得斜边长为:
    依据直角三角形面积公式:,即为;
    内切圆半径面积公式:,即为;
    所以,可得:,所以直径为:;
    故填:6;
    【点睛】
    本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;
    5、122.5°
    【解析】
    【分析】
    如图所示,作△ABC外接圆,利用圆周角定理得到∠A=65°,由于I是△ABC的内心,则∠BIC=180°-∠ABC-∠ACB,然后把∠BAC的度数代入计算即可.
    【详解】
    解:如图所示,作△ABC外接圆,
    ∵点O是△ABC的外心,∠BOC=130°,
    ∴∠A=65°,
    ∴∠ABC+∠ACB=115°,
    ∵点I是△ABC的内心,
    ∴∠IBC+∠ICB=×115°=57.5°,
    ∴∠BIC=180°﹣57.5°=122.5°.
    故答案为:122.5°.

    【点睛】
    此题主要考查了三角形内心和外心的综合应用,根据题意得出∠IBC+∠ICB的度数是解题关键.
    三、解答题
    1、 (1)见解析;
    (2)见解析
    【解析】
    【分析】
    (1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
    (2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
    (1)
    解:∵,
    ∴,
    又∵,
    ∴,
    ∴ ;
    (2)
    解:如图,连接OA,

    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵已知,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴AF为⊙O的切线.
    【点睛】
    本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
    2、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
    (2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
    (1)
    证明:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAM,∠OAD=∠DAE,
    ∴∠ODA=∠DAE,
    ∴DO∥MN,
    ∵DE⊥MN,
    ∴DE⊥OD,
    ∵D在⊙O上,
    ∴DE是⊙O的切线;
    (2)
    解:∵∠AED=90°,DE=8,AE=6,
    ∴AD==10,
    连接CD,∵AC是⊙O的直径,
    ∴∠ADC=∠AED=90°,
    ∵∠CAD=∠DAE,
    ∴△ACD∽△ADE,
    ∴,即,
    ∴AC=,
    ∴⊙O的半径是.

    【点睛】
    本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
    3、 (1)见解析
    (2)4
    【解析】
    【分析】
    (1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;
    (2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.
    (1)
    证明:连接OD,

    ∵∠ACB=90°,AC=BC,
    ∴∠ABC=45°,
    ∴∠COD=2∠ABC=90°,
    ∵四边形GDEC是平行四边形,
    ∴DE∥CG,
    ∴∠ODE+∠COD=180°,
    ∴∠ODE=90°,即OD⊥DE,
    ∵OD是半径,
    ∴直线DE是⊙O的切线;
    (2)
    解:设⊙O的半径为r,
    ∵四边形GDEC是平行四边形,
    ∴CG=DE=7,DG=CE=5,
    ∵∠GOD=90°,
    ∴OD2+OG2=DG2,即r2+(7﹣r)2=52,
    解得:r1=3,r2=4,
    当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,
    ∴r=4,即⊙O的半径4.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.
    4、 (1)见解析
    (2)32
    【解析】
    【分析】
    (1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
    (2)根据平行四边形OAEC的面积等于2倍即可求解.
    (1)
    证明:连接OD.

    ∵四边形OAEC是平行四边形,
    ∴,




    又∵,

    ∴,
    ∵AB与相切于点B,


    ∴,

    又∵OD是的半径,
    ∴AD为的切线.
    (2)


    在Rt△AOD中,
    ∴平行四边形OABC的面积是
    【点睛】
    本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.
    5、 (1)见解析
    (2)见解析
    (3)⊙O的半径为5.
    【解析】
    【分析】
    (1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
    (2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
    (3)根据垂径定理和勾股定理即可求出结果.
    (1)
    证明:连接OD交BC于H,如图,

    ∵点E是△ABC的内心,
    ∴AD平分∠BAC,
    即∠BAD=∠CAD,
    ∴,
    ∴OD⊥BC,BH=CH,
    ∵DM∥BC,
    ∴OD⊥DM,
    ∴DM是⊙O的切线;
    (2)
    证明:∵点E是△ABC的内心,

    ∴∠ABE=∠CBE,
    ∵,
    ∴∠DBC=∠BAD,
    ∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
    即∠BED=∠DBE,
    ∴BD=DE;
    (3)
    解:设⊙O的半径为r,
    连接OD,OB,如图,

    由(1)得OD⊥BC,BH=CH,
    ∵BC=8,
    ∴BH=CH=4,
    ∵DE=2,BD=DE,
    ∴BD=2,
    在Rt△BHD中,BD2=BH2+HD2,
    ∴(2)2=42+HD2,解得:HD=2,
    在Rt△BHO中,
    r2=BH2+(r-2)2,解得:r=5.
    ∴⊙O的半径为5.
    【点睛】
    本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题,共32页。

    初中数学第29章 直线与圆的位置关系综合与测试精品课时训练: 这是一份初中数学第29章 直线与圆的位置关系综合与测试精品课时训练,共32页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。

    数学九年级下册第29章 直线与圆的位置关系综合与测试课时作业: 这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共31页。试卷主要包含了将一把直尺等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map