开学活动
搜索
    上传资料 赚现金

    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系同步测评试题(精选)

    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系同步测评试题(精选)第1页
    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系同步测评试题(精选)第2页
    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系同步测评试题(精选)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精练

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精练,共35页。
    九年级数学下册第二十九章直线与圆的位置关系同步测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,⊙O的半径为2,PA,PB,CD分别切⊙O于点A,B,E,CD分别交PA,PB于点C,D,且P,E,O三点共线.若∠P=60°,则CD的长为(  )

    A.4 B.2 C.3 D.6
    2、下面四个结论正确的是( )
    A.度数相等的弧是等弧 B.三点确定一个圆
    C.在同圆或等圆中,圆心角是圆周角的2倍 D.三角形的外心到三角形的三个顶点的距离相等
    3、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
    A.相交 B.相离 C.相切 D.不能确定
    4、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为( )
    A.1 B.2 C.3 D.4
    5、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是(  )
    A.在⊙O上 B.在⊙O内 C.在⊙O外 D.不能确定
    6、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为(  )

    A.12+2π B.4+π C.24+2π D.12+14π
    7、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是(  )
    A.4 B.5 C.6 D.7
    8、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为(  )

    A.1个 B.2个 C.3个 D.4个
    9、如图,在△ABC中,AB=AC=5,BC=8,以A为圆心作一个半径为2的圆,下列结论中正确的是(  )

    A.点B在⊙A内 B.点C在⊙A上
    C.直线BC与⊙A相切 D.直线BC与⊙A相离
    10、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )
    A.4 B.3 C.2 D.1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知正三角形的边心距为,则正三角形的边长为______.
    2、如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D.若∠A=30°,则∠D的度数为______°.

    3、已知正六边形的半径为2,则该正六边形的面积为______°.
    4、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.

    5、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
    三、解答题(5小题,每小题10分,共计50分)
    1、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
    2、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.

    (1)求证:AC为的切线:
    (2)若半径为2,.求阴影部分的面积.
    3、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.

    (1)求证:DM是的切线;
    (2)求证:;
    (3)若,,求的半径.
    4、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.

    (1)如图(1),连接.
    ①求的正切值;
    ②求点的坐标.
    (2)如图(2),若点是的中点,作于点,连接,,,求证:.
    5、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.

    (1)求证:直线DC是⊙O的切线;
    (2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    ,先证明,得出,,得出,过点作,在中,设,则,利用勾股定理求出,即可求解.
    【详解】
    解:连接,

    在和,
    PA,PB,分别切⊙O于点A,B,





    是等边三角形,



    又,



    过点作,如下图

    根据等腰三角形的性质,
    点为的中点,

    在中,
    设,则,


    解得:,


    故选:A.
    【点睛】
    本题考查了圆的切线,三角形全等、等腰三角形、勾股定理,解题的关键是添加适当的辅助线,掌握切线的性质来求解.
    2、D
    【解析】
    【分析】
    根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.
    【详解】
    解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;
    B、不在同一直线上的三点确定一个圆,故错误;
    C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;
    D、三角形的外心到三角形的三个顶点的距离相等,故正确;
    故选D.
    【点睛】
    本题考查了圆的有关的概念,属于基础知识,必须掌握.
    3、A
    【解析】
    【分析】
    直接根据直线与圆的位置关系即可得出结论.
    【详解】
    解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
    ∴直线与⊙O相交.
    故选:A.
    【点睛】
    本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
    4、D
    【解析】
    【分析】
    根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.
    【详解】
    解:∵点A为⊙O外的一点,且⊙O的半径为3,
    ∴线段OA的长度>3.
    故选:D.
    【点睛】
    此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.
    5、A
    【解析】
    【分析】
    先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.
    【详解】
    解:由两点距离公式可得点(8,6)到原点的距离为,
    又的半径为10,
    ∴点(8,6)到圆心的距离等于半径,
    点(8,6)在上,
    故选A.
    【点睛】
    本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.
    6、A
    【解析】
    【分析】
    正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.
    【详解】
    解:正三角形的面积为:,
    三个小半圆的面积为:,中间大圆的面积为:,
    所以阴影部分的面积为:,
    故选:
    【点睛】
    本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.
    7、A
    【解析】
    【分析】
    根据点与圆的位置关系可得,由此即可得出答案.
    【详解】
    解:的半径为5,点在内,

    观察四个选项可知,只有选项A符合,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.
    8、C
    【解析】
    【分析】
    如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB•DC=DE•DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
    【详解】
    解:如图1,∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵等边△ABC内接于⊙O,
    ∴∠ADC=∠ABC=60°,
    故①正确;
    ∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
    ∴∠BDE=∠ADC,
    又∠DBE=∠DAC,
    ∴△DBE∽△DAC,
    ∴,
    ∴DB•DC=DE•DA,
    ∵D是上任一点,
    ∴DB与DC不一定相等,
    ∴DB•DC与DB2也不一定相等,
    ∴DB2与DE•DA也不一定相等,
    故②错误;

    如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
    ∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
    ∴∠ABK=∠ACD,
    ∴AB=AC,
    ∴△ABK≌△ACD(SAS),
    ∴AK=AD,S△ABK=S△ACD,
    ∴DH=KH=DK,

    ∵∠AHD=90°,∠ADH=60°,
    ∴∠DAH=30°,
    ∵AD=2,
    ∴DH=AD=1,
    ∴DK=2DH=2,,
    ∴S△ADK=,
    ∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
    故③正确;
    如图3,连接OA、OG、OC、GC,则OA=OG=OC,
    ∵CF切⊙O于点C,
    ∴CF⊥OC,
    ∵AF⊥CF,
    ∴AF∥OC,
    ∵∠AOC=2∠ABC=120°,
    ∴∠OAC=∠OCA=×(180°﹣120°)=30°,
    ∴∠CAG=∠OCA=30°,
    ∴∠COG=2∠CAG=60°,
    ∴∠AOG=60°,
    ∴△AOG和△COG都是等边三角形,
    ∴OA=OC=AG=CG=OG,
    ∴四边形OABC是菱形,
    ∴OA∥CG,
    ∴S△CAG=S△COG,
    ∴S阴影=S扇形COG,
    ∵∠OCF=90°,∠OCG=60°,
    ∴∠FCG=30°,
    ∵∠F=90°,
    ∴FG=CG,
    ∵FG2+CF2=CG2,CF=,
    ∴(CG)2+()2=CG2,
    ∴CG=4,
    ∴OC=CG=4,
    ∴S阴影=S扇形COG==,
    故④正确,
    ∴①③④这3个结论正确,
    故选C.

    【点睛】
    本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.
    9、D
    【解析】
    【分析】
    过A点作AH⊥BC于H,如图,利用等腰三角形的性质得到BH=CH=BC=4,则利用勾股定理可计算出AH=3,然后根据点与圆的位置关系的判定方法对A选项和B选项进行判断;根据直线与圆的位置关系对C选项和D选项进行判断.
    【详解】
    解:过A点作AH⊥BC于H,如图,

    ∵AB=AC,
    ∴BH=CH=BC=4,
    在Rt△ABH中,AH==3,
    ∵AB=5>3,
    ∴B点在⊙A外,所以A选项不符合题意;
    ∵AC=5>3,
    ∴C点在⊙A外,所以B选项不符合题意;
    ∴AH⊥BC,AH=3>半径,
    ∴直线BC与⊙A相离,所以C选项不符合题意,D选项符合题意.
    故选:D.
    【点睛】
    本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,若直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了点与圆的位置关系和等腰三角形的性质.
    10、A
    【解析】
    【分析】
    根据点与圆的位置关系得出OP>3即可.
    【详解】
    解:∵⊙O的半径为3,点P在⊙O外,
    ∴OP>3,
    故选:A.
    【点睛】
    本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
    二、填空题
    1、6
    【解析】
    【分析】
    直接利用正三角形的性质得出BO=2DO=2,再由勾股定理求出BD的长即可解决问题.
    【详解】
    解:如图所示:连接BO,

    由题意可得,OD⊥BC,OD=,∠OBD=30°,
    故BO=2DO=2.BC=2BD
    由勾股定理得,

    故答案为:6.
    【点睛】
    此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.
    2、30
    【解析】
    【分析】
    连接OC,根据切线的性质定理得到∠OCD=90°,根据三角形内角和定理求出∠D.
    【详解】
    解:连接OC,

    ∵CD为⊙O的切线,
    ∴∠OCD=90°,
    由圆周角定理得,∠COD=2∠A=60°,
    ∴∠D=90°-60°=30°,
    故答案为:30.
    【点睛】
    本题考查的是切线的性质,圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    3、
    【解析】
    【分析】
    正六边形的面积由6个全等的边长为2的等边三角形面积组成,计算一个等边三角形的面积,乘以6即可.
    【详解】
    解:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则△OAB是正三角形.

    ∴OA=AB=2,
    ∴AC=AB=1,
    ∴,
    ∴S△OAB=AB•OC=×2×=,
    则正六边形的面积为6×=6.
    故答案为:6.
    【点睛】
    本题考查了正多边形的面积,等边三角形的性质,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键.
    4、65
    【解析】
    【分析】
    根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.
    【详解】
    解:∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴,
    ∵∠APO=25°,
    ∴,
    故答案为:65.
    【点睛】
    本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    5、 4
    【解析】
    【分析】
    设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
    【详解】
    解:设一直角边长为x,另一直角边长为(6-x),
    ∵三角形是直角三角形,
    ∴根据勾股定理,
    整理得:,
    解得,
    这个直角三角形的斜边长为外接圆的直径,
    ∴外接圆的半径为cm,
    三角形面积为.
    故答案为;.
    【点睛】
    本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
    三、解答题
    1、 (1)OP+PQ>ON; OP=OM;PQ>MN
    (2)见解析
    (3)1<r<4
    【解析】
    【分析】
    (1)利用两点之间线段最短解答即可;
    (2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
    (3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
    (1)
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴OP+PQ>ON.
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 OP=OM,
    ∴PQ>MN.
    故答案为:OP+PQ>ON, OP=OM,PQ>MN;
    (2)
    解:如图,

    ⊙O是求作的图形;
    (3)
    (3)如图2,

    作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
    ∴∠FEO′=∠AFE=90°,
    ∴AF∥EO′,
    ∴∠AEO′=∠BAC=60°,
    ∵AO′=EO′,
    ∴△ADO′是等边三角形,
    ∴AE=AO′,
    ∵AB=8,∠B=30°,
    ∴AC=AB=4,
    ∴AF=2,
    ∴⊙O的半径是1,
    ∴AE=AB=4,
    ∴1<r<4,
    故答案是:1<r<4.
    【点睛】
    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
    2、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)根据切线的判定方法,证出即可;
    (2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.
    (1)
    解:如图,连接OB,

    ∵AB是的切线,
    ∴,即,
    ∵BC是弦,,
    ∴,
    ∴,在和中,,
    ∴,
    ∴,即,
    ∴AC是的切线;
    (2)
    解:在中,
    由勾股定理得,,,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.
    3、 (1)见解析
    (2)见解析
    (3)⊙O的半径为5.
    【解析】
    【分析】
    (1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
    (2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
    (3)根据垂径定理和勾股定理即可求出结果.
    (1)
    证明:连接OD交BC于H,如图,

    ∵点E是△ABC的内心,
    ∴AD平分∠BAC,
    即∠BAD=∠CAD,
    ∴,
    ∴OD⊥BC,BH=CH,
    ∵DM∥BC,
    ∴OD⊥DM,
    ∴DM是⊙O的切线;
    (2)
    证明:∵点E是△ABC的内心,

    ∴∠ABE=∠CBE,
    ∵,
    ∴∠DBC=∠BAD,
    ∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
    即∠BED=∠DBE,
    ∴BD=DE;
    (3)
    解:设⊙O的半径为r,
    连接OD,OB,如图,

    由(1)得OD⊥BC,BH=CH,
    ∵BC=8,
    ∴BH=CH=4,
    ∵DE=2,BD=DE,
    ∴BD=2,
    在Rt△BHD中,BD2=BH2+HD2,
    ∴(2)2=42+HD2,解得:HD=2,
    在Rt△BHO中,
    r2=BH2+(r-2)2,解得:r=5.
    ∴⊙O的半径为5.
    【点睛】
    本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
    4、 (1)①,②(4,3)
    (2)见解析
    【解析】
    【分析】
    (1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
    (2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
    (1)
    解:①以AB为直径的圆的圆心为P,
    过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
    则DH=HC=DC,四边形AOHF为矩形,
    ∴AF=OH,FH=OA=1,
    解方程x2﹣4x+3=0,得x1=1,x2=3,
    ∵OC>OD,
    ∴OD=1,OC=3,
    ∴DC=2,
    ∴DH=1,
    ∴AF=OH=2,
    设圆的半径为r,则PH2=,
    ∴PF=PH﹣FH,
    在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
    解得:r=,PH=2,PF=PH﹣FH=1,
    ∵∠AOD=90°,OA=OD=1,
    ∴AD=,
    ∵AB为直径,
    ∴∠ADB=90°,
    ∴BD===3,
    ∴tan∠ABD===;
    ②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
    ∴∠BEO=90°,
    ∵AB为直径,
    ∴∠AGB=90°,
    ∵∠AOE=90°,
    ∴四边形AOEG是矩形,
    ∴OE=AG,OA=EG=1,
    ∵AF=2,
    ∵PH⊥DC,
    ∴PH⊥AG,
    ∴AF=FG=2,
    ∴AG=OE=4,BG=2PF=2,
    ∴BE=3,
    ∴点B的坐标为(4,3);

    (2)
    证明:过点E作EH⊥x轴于H,
    ∵点E是的中点,
    ∴=,
    ∴ED=EB,
    ∵四边形EDCB为圆P的内接四边形,
    ∴∠EDH=∠EBF,
    在△EHD和△EFB中,

    ∴△EHD≌△EFB(AAS),
    ∴EH=EF,DH=BF,
    在Rt△EHC和Rt△EFC中,

    ∴Rt△EHC≌Rt△EFC(HL),
    ∴CH=CF,
    ∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.

    【点睛】
    本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
    5、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
    (2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
    (1)
    证明:如图所示,连接OC,

    ∵AB是的直径,直线l与相切于点A,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴直线DC是的切线.
    (2)
    解:∵,
    ∴,
    又∵,
    ∴是等边三角形,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴阴影部分的面积=.
    【点睛】
    本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步达标检测题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步达标检测题,共35页。试卷主要包含了在平面直角坐标系中,以点,如图,PA等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品习题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品习题,共30页。

    2021学年第29章 直线与圆的位置关系综合与测试精品习题:

    这是一份2021学年第29章 直线与圆的位置关系综合与测试精品习题,共30页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map