数学九年级下册第29章 直线与圆的位置关系综合与测试单元测试练习
展开九年级数学下册第二十九章直线与圆的位置关系单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,BD是⊙O的切线,∠BCE=30°,则∠D=( )
A.40° B.50° C.60° D.30°
2、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )
A.50° B.55° C.65° D.75°
3、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为( )
A.1个 B.2个 C.3个 D.4个
4、如图,将的圆周分成五等分(分点为A、B、C、D、E),依次隔一个分点相连,即成一个正五角星形.小张在制图过程中,惊讶于图形的奇妙,于是对图形展开了研究,得到:点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点.在以下结论中,不正确的是( )
A. B.
C. D.
5、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )
A.点P在⊙O外 B.点P在⊙O上 C.点P在⊙O内 D.无法确定
6、如图,⊙O的半径为2,PA,PB,CD分别切⊙O于点A,B,E,CD分别交PA,PB于点C,D,且P,E,O三点共线.若∠P=60°,则CD的长为( )
A.4 B.2 C.3 D.6
7、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )
A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
8、已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是( )
A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)
9、如图,一把直尺,60°的直角三角板和一个量角器如图摆放,A为60°角与刻度尺交点,刻度尺上数字为4,点B为量角器与刻度尺的接触点,刻度为7,则该量角器的直径是( )
A.3 B. C.6 D.
10、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是( )
A.0 B.1 C.2 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.
2、如图,正五边形ABCDE内接于⊙O,作OF⊥BC交⊙O于点F,连接FA,则∠OFA=_____°.
3、如图,在中,,,,是内切圆,则的半径为______.
4、如图,半径为2的与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为______.
5、如图,AB,BC,CD分别与⊙O相切于点E、F、G三点,且AB∥CD,BO=6,CO=8,则BE+GC的长为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
2、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).
(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
①设A、B、P三点所在圆的圆心为C,则点C的坐标是 ,⊙C的半径是 ;
②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为 .
3、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.
(1)求证:;
(2)求证:AF是⊙O的切线.
4、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
5、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.
(1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
(2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
①线段;②线段;③线段
(3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.
-参考答案-
一、单选题
1、D
【解析】
【分析】
连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得.
【详解】
解:连接
BD是⊙O的切线
故选D
【点睛】
本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.
2、C
【解析】
【分析】
首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.
【详解】
解:∵BD是切线,
∴BD⊥AB,
∴∠ABD=90°,
∵∠BOC=50°,
∴∠A=∠BOC=25°,
∴∠D=90°﹣∠A=65°,
故选:C.
【点睛】
本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.
3、C
【解析】
【分析】
如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB•DC=DE•DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
【详解】
解:如图1,∵△ABC是等边三角形,
∴∠ABC=60°,
∵等边△ABC内接于⊙O,
∴∠ADC=∠ABC=60°,
故①正确;
∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
∴∠BDE=∠ADC,
又∠DBE=∠DAC,
∴△DBE∽△DAC,
∴,
∴DB•DC=DE•DA,
∵D是上任一点,
∴DB与DC不一定相等,
∴DB•DC与DB2也不一定相等,
∴DB2与DE•DA也不一定相等,
故②错误;
如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
∴∠ABK=∠ACD,
∴AB=AC,
∴△ABK≌△ACD(SAS),
∴AK=AD,S△ABK=S△ACD,
∴DH=KH=DK,
∵∠AHD=90°,∠ADH=60°,
∴∠DAH=30°,
∵AD=2,
∴DH=AD=1,
∴DK=2DH=2,,
∴S△ADK=,
∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
故③正确;
如图3,连接OA、OG、OC、GC,则OA=OG=OC,
∵CF切⊙O于点C,
∴CF⊥OC,
∵AF⊥CF,
∴AF∥OC,
∵∠AOC=2∠ABC=120°,
∴∠OAC=∠OCA=×(180°﹣120°)=30°,
∴∠CAG=∠OCA=30°,
∴∠COG=2∠CAG=60°,
∴∠AOG=60°,
∴△AOG和△COG都是等边三角形,
∴OA=OC=AG=CG=OG,
∴四边形OABC是菱形,
∴OA∥CG,
∴S△CAG=S△COG,
∴S阴影=S扇形COG,
∵∠OCF=90°,∠OCG=60°,
∴∠FCG=30°,
∵∠F=90°,
∴FG=CG,
∵FG2+CF2=CG2,CF=,
∴(CG)2+()2=CG2,
∴CG=4,
∴OC=CG=4,
∴S阴影=S扇形COG==,
故④正确,
∴①③④这3个结论正确,
故选C.
【点睛】
本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.
4、C
【解析】
【分析】
利用正五边形的性质,圆的性质,相似三角形的判定和性质,黄金分割定理判断即可.
【详解】
如图,连接AB,BC,CD,DE,EA,
∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
∴,
∵AB=BC=CD=DE=EA,
∴∠DAE=∠AEB,
∴AM=ME,
∴,
∴A正确,不符合题意;
∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
∴点F是线段BD的黄金分割点,
∴,
∵AB=BC=CD=DE=EA,∠BCD=∠AED,
∴△BCD≌△AED,
∴AD=BD,
∴,
∴B正确,不符合题意;
∵AB=BC=CD=DE=EA, ∠BAE=108°,
∴∠BAC=∠CAD=∠DAE,
∴∠CAD=36°,
∴D正确,不符合题意;
∵∠CAD=36°, AN=BN=AM=ME,
∴∠ANM=∠AMN=72°,
∴AM>MN,
∴C错误,符合题意;
故选C.
【点睛】
本题考查了圆的性质,正五边形的性质,三角形的全等,黄金分割,熟练掌握圆的性质,正五边形的性质,黄金分割的意义是解题的关键.
5、A
【解析】
【分析】
根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.
【详解】
解:∵⊙O的半径分别是3,点P到圆心O的距离为4,
∴d>r,
∴点P与⊙O的位置关系是:点在圆外.
故选:A.
【点睛】
本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.
6、A
【解析】
【分析】
,先证明,得出,,得出,过点作,在中,设,则,利用勾股定理求出,即可求解.
【详解】
解:连接,
在和,
PA,PB,分别切⊙O于点A,B,
,
,
,
,
,
是等边三角形,
,
,
又,
,
,
,
过点作,如下图
根据等腰三角形的性质,
点为的中点,
,
在中,
设,则,
,
,
解得:,
,
,
故选:A.
【点睛】
本题考查了圆的切线,三角形全等、等腰三角形、勾股定理,解题的关键是添加适当的辅助线,掌握切线的性质来求解.
7、A
【解析】
【分析】
首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
【详解】
解:∵△ABC的外心即是三角形三边垂直平分线的交点,
如图所示:EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(﹣2,﹣1).
故选:A
【点睛】
此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
8、C
【解析】
【分析】
先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.
【详解】
解:设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,
A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;
D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
故选:C.
【点睛】
本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.
9、D
【解析】
【分析】
如图所示,连接OA,OB,OC,利用切线定理可知△AOC与△AOB为直角三角形,进而可证明Rt△AOC≌Rt△AOB,根据三角板的角度可算出∠OAB的度数,借助三角函数求出OB的长度.
【详解】
解:如图所示,连接OA,OB,OC,
∵三角板的顶角为60°,
∴∠CAB=120°,
∵AC,AB,与扇形分别交于一点,
∴AC,AB是扇形O所在圆的切线,
∴OC⊥AC,OB⊥AB,
在Rt△AOC与Rt△AOB中,
∴Rt△AOC≌Rt△AOB,
∴∠OAC=∠OAB=60°,
由题可知AB=7-4=3,
∴OB=AB•tan60°= ,
∴直径为,
故选:D.
【点睛】
本题考查,圆的切线定理,全等三角形的判定,三角函数,在图中构造适合的辅助线是解决本题的关键.
10、A
【解析】
【分析】
圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.
【详解】
解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,
∴,
∴直线l与相离,
∴直线l与⊙O的公共点的个数为0,
故选A.
【点睛】
本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.
二、填空题
1、15##十五
【解析】
【分析】
根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.
【详解】
解:如图,设正多边形的外接圆为⊙O,连接OA,OB,
∵∠ADB=12°,
∴∠AOB=2∠ADB=24°,
而360°÷24°=15,
∴这个正多边形为正十五边形,
故答案为:15.
【点睛】
本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.
2、36
【解析】
【分析】
连接OA,OB,OB交AF于J.由正多边形中心角、垂径定理、圆周角定理得出∠AOB=72°,∠BOF=36°,再由等腰三角形的性质得出答案.
【详解】
解:连接OA,OB,OB交AF于J.
∵五边形ABCDE是正五边形,OF⊥BC,
∴,
∴∠AOB=72°,∠BOF=∠AOB=36°,
∴∠AOF=∠AOB +∠BOF=108°,
∵OA=OF,
∴∠OAF=∠OFA==36°
故答案为:36.
【点睛】
本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题.正n边形的每个中心角都等于.
3、1
【解析】
【分析】
根据三角形内切圆与内心的性质和三角形面积公式解答即可.
【详解】
解:∵∠C=90°,AC=3,AB=5,
∴BC==4,
如图,分别连接OA、OB、OC、OD、OE、OF,
∵⊙O是△ABC内切圆,D、E、F为切点,
∴OD⊥BC,OE⊥AC,OF⊥AB于D、E、F,OD=OE=OF,
∴S△ABC=S△BOC+S△AOC+S△AOB=BC•DO+AC•OE+AB•FO=(BC+AC+AB)•OD,
∵∠ACB=90°,
∴,
∴.
故答案为:1.
【点睛】
此题考查三角形内切圆与内心,勾股定理,熟练掌握三角形内切圆的性质是解答本题的关键.
4、##
【解析】
【分析】
连接OB,OD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.
【详解】
解:连接OB,OD,
∵五边形ABCDE是正五边形,
∴∠E=∠A=.
∵AB、DE与⊙O相切,
∴∠OBA=∠ODE=90°,
∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,
∴劣弧BD的长为,
故答案为:.
【点睛】
本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.
5、10
【解析】
【分析】
先由切线长定理得到BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,再证明∠BOC=90°,然后利用勾股定理计算出BC即可.
【详解】
∵AB,BC,CD分别与⊙O相切于点E、F、G三点,
∴BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,
∴,,
∴,
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∴,
∴∠BOC=90°,
在Rt△OBC中,∵BO=6,CO=8,
∴,
∴BE+CG=10.
故答案为:10.
【点睛】
此题考查了切线长定理、切线的性质、勾股定理以及直角三角形的判定与性质.此题难度适中,正确理解切线长定理是解决本题的关键.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
2、 (1)①(4,3)或C(4,−3),,②,
(2)
【解析】
【分析】
(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
(1)
①如图1中,
在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
圆心C的坐标为(4,3),半径为3,
根据对称性可知点C(4,−3)也满足条件,
故答案是:(4,3)或C(4,−3),,
②y轴的正半轴上存在线段AB的“等角点”。
如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,
∵⊙C的半径,
∴⊙C与y轴相交,
设交点为,,此时,在y轴的正半轴上,
连接、、CA,则==CA =r=3,
∵CD⊥y轴,CD=4,,
∴,
∴,;
当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
故答案为:,
(2)
当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,
∵点P,点N在⊙E上,
∴∠APB=∠ANB,
∵∠ANB是△MAN的外角,
∴∠ANB>∠AMB,
即∠APB>∠AMB,
此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
∵⊙E与y轴相切于点P,则EP⊥y轴,
∴四边形OPEF是矩形,OP=EF,PE=OF=4,
∴⊙E的半径为4,即EA=4,
∴在Rt△AEF中,,
∴,
即 .
故答案为:
【点睛】
本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
3、 (1)见解析;
(2)见解析
【解析】
【分析】
(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
(1)
解:∵,
∴,
又∵,
∴,
∴ ;
(2)
解:如图,连接OA,
∵,
∴,
∴,
∵,
∴,
∴,
∵已知,
∴,
∴,
∴,
∴,
∴AF为⊙O的切线.
【点睛】
本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
4、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
5、 (1)
(2)②,③
(3)
(4)
【解析】
【分析】
(1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
(2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
(3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
(1)
解:如图所示:作OD与相切,
∴,
∵,,
∴,
∴,
∴此时的角度最小,且,
∴切点在线段OD上,
∴OA的关联角为;
(2)
解:如图所示:连接,,,,
∵,,
∴,
∴切点不在线段上,不是的“关联线段”;
∵,,
∴,,
∵,
∴是的“关联线段”;
∵,
∴是的“关联线段”;
(3)
解:,,线段BD绕点O的旋转路线的半径为1的上,
当OD与相切时,
由(1)可得:,
∴当时,线段BD是的“关联线段”,
故答案为:;
(4)
解:如图所示:当m取最大值时,
M点运动最小半径是O到过点的直线l的距离是m,
∵,,
∴,
∴,
∴m的最大值为4,
如图所示:当m取小值时,
开始时存在ME与相切,
∵,,
∴,
∵,及点M所在位置,
∴,
综上可得:,
故答案为:.
【点睛】
题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试随堂练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试随堂练习题,共26页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共28页。试卷主要包含了将一把直尺,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
冀教版九年级下册第29章 直线与圆的位置关系综合与测试精练: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精练,共36页。试卷主要包含了将一把直尺等内容,欢迎下载使用。