初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后作业题
展开九年级数学下册第二十九章直线与圆的位置关系同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是( )
A.4 B.5 C.6 D.7
2、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
3、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )
A.不能构成三角形 B.这个三角形是等边三角形
C.这个三角形是直角三角形 D.这个三角形是等腰三角形
4、一个正多边形的半径与边长相等,则这个正多边形的边数为( )
A.4 B.5 C.6 D.8
5、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为( )
A.4m2 B.12m2 C.24m2 D.24m2
6、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )
A. B. C. D.
7、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是( )
A.2,2 B.4,4 C.4,2 D.4,
8、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )
A.20° B.30° C.50° D.40°
9、如图,与相切于点,连接交于点,点为优弧上一点,连接,,若,的半径,则的长为( )
A.4 B. C. D.1
10、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).
2、如图,在矩形中,是边上的点,经过,,三点的与相切于点.若,,则的半径是__________.
3、如图,AB是⊙O的切线,A为切点,连结OA、OB.若OA=5,AB=6,则tan∠AOB=______.
4、如图,、分别与相切于A、B两点,若,则的度数为________.
5、已知正三角形的边心距为,则正三角形的边长为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知是的直径,点在上,点在外.
(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
(2)综合运用,在你所作的图中.若,求证:是的切线.
2、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=8,AE=6,求⊙O的半径.
3、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
(1)求证:直线DC是⊙O的切线;
(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
4、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
5、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.
(1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
(2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
①线段;②线段;③线段
(3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据点与圆的位置关系可得,由此即可得出答案.
【详解】
解:的半径为5,点在内,
,
观察四个选项可知,只有选项A符合,
故选:A.
【点睛】
本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.
2、B
【解析】
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
3、C
【解析】
【分析】
分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.
【详解】
如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OC,OE,OG,OA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,
∴OC=OAcos60°=,OE= OAcos45°=,OG= OAcos30°=,
∵,
∴这个三角形是直角三角形,
故选C.
【点睛】
本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.
4、C
【解析】
【分析】
如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得.
【详解】
解:如图,由题意得:,
是等边三角形,
,
则这个正多边形的边数为,
故选:C.
【点睛】
本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.
5、D
【解析】
【分析】
先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
【详解】
解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
由题意得:BC=4cm,
∵六边形ABCD是正六边形,
∴∠BOC=360°÷6=60°,
又∵OB=OC,
∴△OBC是等边三角形,
∴,,
∴,
∴,
∴,
故选D.
【点睛】
本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
6、D
【解析】
【分析】
过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.
【详解】
解:过点O作OH⊥BC于点H,连接AO,BO,
∵△ABC是等边三角形,
∴∠ABC=60°,
∵O为三角形外心,
∴∠OAH=30°,
∴OH=OB=1,
∴BH=,AH=-AO+OH=2+1=3
∴
∴
故选:D
【点睛】
本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
7、B
【解析】
【分析】
根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.
【详解】
解:如图,
∵正六边形的任一内角为120°,
∴∠ABD=180°-120°=60°,
∴∠BAD=30°,为等边三角形,
∵
∴
∴
∴
∴这个正六边形半径R和扳手的开口a的值分别是4,4.
故选:B.
【点睛】
本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.
8、C
【解析】
【分析】
连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.
【详解】
解:连接OC,
∵DC切⊙O于点C,
∴∠OCD=90°,
∵∠A=20°,
∴∠OCA=20°,
∴∠DOC=40°,
∴∠D=90°-40°=50°.
故选:C.
【点睛】
本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.
9、B
【解析】
【分析】
连接OB,根据切线性质得∠ABO=90°,再根据圆周角定理求得∠AOB=60°,进而求得∠A=30°,然后根据含30°角的直角三角形的性质解答即可.
【详解】
解:连接OB,
∵AB与相切于点B,
∴∠ABO=90°,
∵∠BDC=30°,
∴∠AOB=2∠BDC=60°,
在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,
∴OA=2OB=4,
∴,
故选:B.
【点睛】
本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30°角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.
10、D
【解析】
【分析】
连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.
【详解】
解:连接、,
,的内接正六边形,
,
∴△DOE是等边三角形,
∴∠DOM=30°,
设,则
,
解得:,
,
根据图可得:,
,
.
故选:D.
【点睛】
本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.
二、填空题
1、①②③
【解析】
【分析】
根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.
【详解】
解:如图, 是的两条切线,
故①正确,
故②正确,
是的两条切线,
取的中点,连接,则
∴以为圆心,为半径作圆,则共圆,故③正确,
M是外接圆的圆心,
与题干提供的条件不符,故④错误,
综上:正确的说法是①②③.
故填①②③.
【点睛】
本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.
2、##
【解析】
【分析】
连接EO,并延长交圆于点G,在Rt△DEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.
【详解】
解:连接EO,并延长交圆于点G,
∵四边形是矩形,
∴CD=,∠D=90°,
∵与相切于点,
∴OE⊥CD,再结合矩形的性质可得:
∴DE=CE=3.
∵,
∴EF=.
∵与相切于点,
∴∠GED=90°.
∵GE是直径,
∴∠GFE=90°,
∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,
∴∠DEF=∠EGF.
∵∠D=∠∠GFE=90°,
∴△DEF∽△FGE,
∴,
∴,
∴GE=,
∴的半径是,
故答案为;.
【点睛】
本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
3、
【解析】
【分析】
由题意易得∠OAB=90°,然后根据三角函数可进行求解.
【详解】
解:∵AB是⊙O的切线,
∴∠OAB=90°,
在Rt△OAB中,OA=5,AB=6,
∴,
故答案为.
【点睛】
本题主要考查三角函数与切线的性质,熟练掌握三角函数与切线的性质是解题的关键.
4、
【解析】
【分析】
根据已知条件可得出,,再利用圆周角定理得出即可.
【详解】
解:、分别与相切于、两点,
,,
,
,
.
故答案为:.
【点睛】
本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.
5、6
【解析】
【分析】
直接利用正三角形的性质得出BO=2DO=2,再由勾股定理求出BD的长即可解决问题.
【详解】
解:如图所示:连接BO,
由题意可得,OD⊥BC,OD=,∠OBD=30°,
故BO=2DO=2.BC=2BD
由勾股定理得,
∴
故答案为:6.
【点睛】
此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.
三、解答题
1、 (1)作图见解析
(2)证明见解析
【解析】
【分析】
(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
(1)
解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.
(2)
解:连接AD,如图
∵为直径
∴
∵
∴
∴
又∵AB为直径
∴AE是的切线.
【点睛】
本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
(1)
证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAM,∠OAD=∠DAE,
∴∠ODA=∠DAE,
∴DO∥MN,
∵DE⊥MN,
∴DE⊥OD,
∵D在⊙O上,
∴DE是⊙O的切线;
(2)
解:∵∠AED=90°,DE=8,AE=6,
∴AD==10,
连接CD,∵AC是⊙O的直径,
∴∠ADC=∠AED=90°,
∵∠CAD=∠DAE,
∴△ACD∽△ADE,
∴,即,
∴AC=,
∴⊙O的半径是.
【点睛】
本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
3、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
4、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
5、 (1)
(2)②,③
(3)
(4)
【解析】
【分析】
(1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
(2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
(3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
(1)
解:如图所示:作OD与相切,
∴,
∵,,
∴,
∴,
∴此时的角度最小,且,
∴切点在线段OD上,
∴OA的关联角为;
(2)
解:如图所示:连接,,,,
∵,,
∴,
∴切点不在线段上,不是的“关联线段”;
∵,,
∴,,
∵,
∴是的“关联线段”;
∵,
∴是的“关联线段”;
(3)
解:,,线段BD绕点O的旋转路线的半径为1的上,
当OD与相切时,
由(1)可得:,
∴当时,线段BD是的“关联线段”,
故答案为:;
(4)
解:如图所示:当m取最大值时,
M点运动最小半径是O到过点的直线l的距离是m,
∵,,
∴,
∴,
∴m的最大值为4,
如图所示:当m取小值时,
开始时存在ME与相切,
∵,,
∴,
∵,及点M所在位置,
∴,
综上可得:,
故答案为:.
【点睛】
题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习,共32页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。
冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题,共31页。试卷主要包含了已知M,如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。
2020-2021学年第29章 直线与圆的位置关系综合与测试巩固练习: 这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试巩固练习,共31页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。