终身会员
搜索
    上传资料 赚现金
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)
    立即下载
    加入资料篮
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)01
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)02
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第29章 直线与圆的位置关系综合与测试课时练习

    展开
    这是一份数学第29章 直线与圆的位置关系综合与测试课时练习,共31页。

    九年级数学下册第二十九章直线与圆的位置关系综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
    A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断
    2、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为(  )

    A.50° B.55° C.65° D.75°
    3、如图,中,,,点O是的内心.则等于( )

    A.124° B.118° C.112° D.62°
    4、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是(  )
    A.在⊙O上 B.在⊙O内 C.在⊙O外 D.不能确定
    5、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为(  )
    A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
    6、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    7、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    8、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    9、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是(  )
    A.4 B.5 C.6 D.7
    10、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )

    A.10cm B.8cm C.6cm D.5cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .
    2、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
    ①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).

    3、如图,在△ABC中,∠ACB=90°,CD=2,以CD为直径的⊙与AB相切于点E.若弧DE的长为为π,则阴影部分的面积为 _____.(保留π)

    4、如图,、是的切线,其中、为切点,点在上,,则______.

    5、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.

    三、解答题(5小题,每小题10分,共计50分)
    1、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
    2、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.

    (1)求证:直线DC是⊙O的切线;
    (2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
    3、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°

    (1)试说明:直线为⊙P的切线.
    (2)若∠B=30°,AD=2,求CD的长.
    4、如图,是的切线,点在上,与相交于,是的直径,连接,若.

    (1)求证:平分;
    (2)当,时,求的半径长.
    5、如图,已知是的直径,点在上,点在外.

    (1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
    (2)综合运用,在你所作的图中.若,求证:是的切线.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    直接根据点与圆的位置关系进行解答即可.
    【详解】
    解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
    ∴点P在圆内.
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.
    2、C
    【解析】
    【分析】
    首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.
    【详解】
    解:∵BD是切线,
    ∴BD⊥AB,
    ∴∠ABD=90°,
    ∵∠BOC=50°,
    ∴∠A=∠BOC=25°,
    ∴∠D=90°﹣∠A=65°,
    故选:C.
    【点睛】
    本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.
    3、B
    【解析】
    【分析】
    根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
    【详解】
    解:∵点O是△ABC的内心,
    ∴OB平分∠ABC,OC平分∠ACB,
    ∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
    ∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
    故选B.
    【点睛】
    本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
    4、A
    【解析】
    【分析】
    先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.
    【详解】
    解:由两点距离公式可得点(8,6)到原点的距离为,
    又的半径为10,
    ∴点(8,6)到圆心的距离等于半径,
    点(8,6)在上,
    故选A.
    【点睛】
    本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.
    5、B
    【解析】
    【分析】
    根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
    即点A到圆心O的距离小于圆的半径,
    ∴点A在⊙O内.
    故选:B.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    6、A
    【解析】
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    7、B
    【解析】
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    8、C
    【解析】
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    9、A
    【解析】
    【分析】
    根据点与圆的位置关系可得,由此即可得出答案.
    【详解】
    解:的半径为5,点在内,

    观察四个选项可知,只有选项A符合,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.
    10、D
    【解析】
    【分析】
    作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.
    【详解】
    解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,

    由题意可知cm,cm;

    ∴AC=BC=4cm,
    设茶杯的杯口外沿半径为
    则在中,由勾股定理知
    解得
    故选D.
    【点睛】
    本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.
    二、填空题
    1、3cm
    【解析】
    【分析】
    根据点与圆的位置关系得出:点P在⊙O上,则即可得出答案.
    【详解】
    ∵⊙O的直径为6cm,
    ∴⊙O的半径为3cm,
    ∵点P在⊙O上,
    ∴.
    故答案为:3cm.
    【点睛】
    本题考查点与圆的位置关系:点P在⊙O外,则,点P在⊙O上,则,点P在⊙O内,则.
    2、②③④
    【解析】
    【分析】
    根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
    【详解】
    ∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
    ∴∠CMH=90°,
    ∵四边形ABCD是正方形,
    ∴∠CMH=∠CDH=90°,
    ∵CM=CD,CH=CH,
    ∴△CMH≌△CDH,
    ∴HD=HM,∠HCM=∠HCD,
    同理可证,∴GM=GB,∠GCB=∠GCM,
    ∴GB+DH=GH,无法确定HD=2BG,
    故①错误;
    ∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
    ∴2∠HCM+2∠GCM=90°,
    ∴∠HCM+∠GCM=45°,
    即∠GCH=45°,
    故②正确;

    ∵△CMH≌△CDH,BD是正方形的对角线,
    ∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
    ∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
    =∠DHF +∠HDF+∠HFD
    =180°,
    根据对角互补的四边形内接于圆,
    ∴H,F,E,G四点在同一个圆上,
    故③正确;
    ∵正方形ABCD的边长为1,

    =1
    =,∠GAH=90°,AC=
    取GH的中点P,连接PA,
    ∴GH=2PA,
    ∴=,
    ∴当PA取最小值时,有最大值,
    连接PC,AC,
    则PA+PC≥AC,
    ∴PA≥AC- PC,
    ∴当PC最大时,PA最小,
    ∵直径是圆中最大的弦,
    ∴PC=1时,PA最小,
    ∴当A,P,C三点共线时,且PC最大时,PA最小,
    ∴PA=-1,
    ∴最大值为:1-(-1)=2-,
    ∴四边形CGAH面积的最大值为2,
    ∴④正确;
    故答案为: ②③④.
    【点睛】
    本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
    3、
    【解析】
    【分析】
    连接OE,首先由弧长公式求得∠EOD=60°;然后利用△BEO的性质得到线段OB的长度,易得AC与BC的长度;最后根据S阴影=S△ABC﹣S扇形OCE﹣S△OBE解答.
    【详解】
    解:如图,连接OE,
    ∵以CD为直径的⊙与AB相切于点E,
    ∴OE⊥BE.
    设∠EOD=n°,
    ∵OD= CD=1,弧DE的长为π,
    ∴=π.
    ∴∠EOD=60°.
    ∴∠B=30°,∠COE=120°.
    ∴OB=2OE=2,BE=,AB=2AC,
    ∵AC=AE,
    ∴AC=BE=.
    ∴S阴影=S△ABC﹣S扇形OCE﹣S△OBE
    =××3﹣﹣×1×=﹣.
    故答案是:﹣.

    【点睛】
    考查了切线的性质,弧长的计算和扇形面积的计算,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
    4、76
    【解析】
    【分析】
    连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案
    【详解】
    解:连接OA、OB,,

    ∴∠AOB=104°
    ∵PA、PB是⊙O的两条切线,点A、B为切点,
    ∴∠OAP=∠OBP=90°
    ∵∠APB+∠OAP+∠AOB+∠OBP=360°
    ∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°
    故答案为:76
    【点睛】
    本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键
    5、
    【解析】
    【分析】
    先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
    【详解】
    解:∵BC是圆O的切线,
    ∴∠OBC=90°,
    ∵四边形ABCO是平行四边形,
    ∴AO=BC,
    又∵AO=BO,
    ∴BO=BC,
    ∴∠BOC=∠BCO=45°,
    ∵OD=OB,
    ∴∠ODB=∠OBD,
    ∵∠ODB+∠OBD=∠BOC,
    ∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
    故答案为:22.5°.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
    三、解答题
    1、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
    2、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
    (2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
    (1)
    证明:如图所示,连接OC,

    ∵AB是的直径,直线l与相切于点A,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴直线DC是的切线.
    (2)
    解:∵,
    ∴,
    又∵,
    ∴是等边三角形,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴阴影部分的面积=.
    【点睛】
    本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
    3、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
    (2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
    (1)
    连接PC,
    ∵PC=PB,
    ∴∠B=∠PCB,
    ∴∠APC=2∠B,
    ∵2∠B+∠DAB=180°,
    ∴∠DAP+∠APC=180°,
    ∴PC∥DA,
    ∵∠ADC=90°,
    ∴∠DCP=90°,
    即DC⊥CP,
    ∴直线CD为⊙P的切线;

    (2)
    连接AC,
    ∵∠B=30°,
    ∴∠CPA=2∠B=60°,
    ∵AP=CP,∠CPA=60°,
    ∴△APC为等边三角形,
    ∵∠DCP=90°,
    ∴∠DCA=90°-∠ACP=90°-60°=30°,
    ∵AD=2,∠ADC=90°,
    ∴AC=2AD=4,
    ∴CD=.
    【点睛】
    本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
    4、 (1)见解析
    (2)的半径长为.
    【解析】
    【分析】
    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
    (1)
    证明:如图,连接,
    ∵是的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即平分;

    (2)
    解:如图,连接,
    在中,,,
    由勾股定理得:,
    ∵是的直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即,
    解得:,
    ∴的半径长为.

    【点睛】
    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
    5、 (1)作图见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
    (2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
    (1)
    解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.

    (2)
    解:连接AD,如图

    ∵为直径




    又∵AB为直径
    ∴AE是的切线.
    【点睛】
    本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试,共36页。试卷主要包含了如图,一把宽为2cm的刻度尺,如图所示,在的网格中,A,如图,将的圆周分成五等分等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题,共33页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题,共34页。试卷主要包含了如图,将的圆周分成五等分,下列四个命题中,真命题是,在平面直角坐标系中,以点,在中,,,给出条件等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map