数学第29章 直线与圆的位置关系综合与测试课时练习
展开九年级数学下册第二十九章直线与圆的位置关系综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断
2、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )
A.50° B.55° C.65° D.75°
3、如图,中,,,点O是的内心.则等于( )
A.124° B.118° C.112° D.62°
4、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是( )
A.在⊙O上 B.在⊙O内 C.在⊙O外 D.不能确定
5、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为( )
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
6、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A. B. C. D.
7、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20° B.25° C.30° D.40°
8、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
9、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是( )
A.4 B.5 C.6 D.7
10、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )
A.10cm B.8cm C.6cm D.5cm
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .
2、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).
3、如图,在△ABC中,∠ACB=90°,CD=2,以CD为直径的⊙与AB相切于点E.若弧DE的长为为π,则阴影部分的面积为 _____.(保留π)
4、如图,、是的切线,其中、为切点,点在上,,则______.
5、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:
(1)如图1,当与相切于点时,求的长;
(2)如图2,当与相切时,
①求的长;
②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
2、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
(1)求证:直线DC是⊙O的切线;
(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
3、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°
(1)试说明:直线为⊙P的切线.
(2)若∠B=30°,AD=2,求CD的长.
4、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
5、如图,已知是的直径,点在上,点在外.
(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
(2)综合运用,在你所作的图中.若,求证:是的切线.
-参考答案-
一、单选题
1、A
【解析】
【分析】
直接根据点与圆的位置关系进行解答即可.
【详解】
解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
∴点P在圆内.
故选:A.
【点睛】
本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.
2、C
【解析】
【分析】
首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.
【详解】
解:∵BD是切线,
∴BD⊥AB,
∴∠ABD=90°,
∵∠BOC=50°,
∴∠A=∠BOC=25°,
∴∠D=90°﹣∠A=65°,
故选:C.
【点睛】
本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.
3、B
【解析】
【分析】
根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
【详解】
解:∵点O是△ABC的内心,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
故选B.
【点睛】
本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
4、A
【解析】
【分析】
先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.
【详解】
解:由两点距离公式可得点(8,6)到原点的距离为,
又的半径为10,
∴点(8,6)到圆心的距离等于半径,
点(8,6)在上,
故选A.
【点睛】
本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.
5、B
【解析】
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:B.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
6、A
【解析】
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
7、B
【解析】
【分析】
连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
8、C
【解析】
【分析】
由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
9、A
【解析】
【分析】
根据点与圆的位置关系可得,由此即可得出答案.
【详解】
解:的半径为5,点在内,
,
观察四个选项可知,只有选项A符合,
故选:A.
【点睛】
本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.
10、D
【解析】
【分析】
作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.
【详解】
解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,
由题意可知cm,cm;
∵
∴AC=BC=4cm,
设茶杯的杯口外沿半径为
则在中,由勾股定理知
解得
故选D.
【点睛】
本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.
二、填空题
1、3cm
【解析】
【分析】
根据点与圆的位置关系得出:点P在⊙O上,则即可得出答案.
【详解】
∵⊙O的直径为6cm,
∴⊙O的半径为3cm,
∵点P在⊙O上,
∴.
故答案为:3cm.
【点睛】
本题考查点与圆的位置关系:点P在⊙O外,则,点P在⊙O上,则,点P在⊙O内,则.
2、②③④
【解析】
【分析】
根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
【详解】
∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
∴∠CMH=90°,
∵四边形ABCD是正方形,
∴∠CMH=∠CDH=90°,
∵CM=CD,CH=CH,
∴△CMH≌△CDH,
∴HD=HM,∠HCM=∠HCD,
同理可证,∴GM=GB,∠GCB=∠GCM,
∴GB+DH=GH,无法确定HD=2BG,
故①错误;
∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
∴2∠HCM+2∠GCM=90°,
∴∠HCM+∠GCM=45°,
即∠GCH=45°,
故②正确;
∵△CMH≌△CDH,BD是正方形的对角线,
∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
=∠DHF +∠HDF+∠HFD
=180°,
根据对角互补的四边形内接于圆,
∴H,F,E,G四点在同一个圆上,
故③正确;
∵正方形ABCD的边长为1,
∴
=1
=,∠GAH=90°,AC=
取GH的中点P,连接PA,
∴GH=2PA,
∴=,
∴当PA取最小值时,有最大值,
连接PC,AC,
则PA+PC≥AC,
∴PA≥AC- PC,
∴当PC最大时,PA最小,
∵直径是圆中最大的弦,
∴PC=1时,PA最小,
∴当A,P,C三点共线时,且PC最大时,PA最小,
∴PA=-1,
∴最大值为:1-(-1)=2-,
∴四边形CGAH面积的最大值为2,
∴④正确;
故答案为: ②③④.
【点睛】
本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
3、
【解析】
【分析】
连接OE,首先由弧长公式求得∠EOD=60°;然后利用△BEO的性质得到线段OB的长度,易得AC与BC的长度;最后根据S阴影=S△ABC﹣S扇形OCE﹣S△OBE解答.
【详解】
解:如图,连接OE,
∵以CD为直径的⊙与AB相切于点E,
∴OE⊥BE.
设∠EOD=n°,
∵OD= CD=1,弧DE的长为π,
∴=π.
∴∠EOD=60°.
∴∠B=30°,∠COE=120°.
∴OB=2OE=2,BE=,AB=2AC,
∵AC=AE,
∴AC=BE=.
∴S阴影=S△ABC﹣S扇形OCE﹣S△OBE
=××3﹣﹣×1×=﹣.
故答案是:﹣.
【点睛】
考查了切线的性质,弧长的计算和扇形面积的计算,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
4、76
【解析】
【分析】
连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案
【详解】
解:连接OA、OB,,
∴∠AOB=104°
∵PA、PB是⊙O的两条切线,点A、B为切点,
∴∠OAP=∠OBP=90°
∵∠APB+∠OAP+∠AOB+∠OBP=360°
∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°
故答案为:76
【点睛】
本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键
5、
【解析】
【分析】
先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
【详解】
解:∵BC是圆O的切线,
∴∠OBC=90°,
∵四边形ABCO是平行四边形,
∴AO=BC,
又∵AO=BO,
∴BO=BC,
∴∠BOC=∠BCO=45°,
∵OD=OB,
∴∠ODB=∠OBD,
∵∠ODB+∠OBD=∠BOC,
∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
故答案为:22.5°.
【点睛】
本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
三、解答题
1、 (1)BP=2
(2)①4.8;②9.6
【解析】
【分析】
(1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
(2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
(1)
连接PT,如图:
∵⊙P与AD相切于点T,
∴∠ATP=90°,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∴四边形ABPT是矩形,
∴PT=AB=4=PE,
∵E是AB的中点,
∴BE=AB=2,
在Rt△BPE中,;
(2)
①∵⊙P与CD相切,
∴PC=PE,
设BP=x,则PC=PE=10-x,
在Rt△BPE中,BP2+BE2=PE2,
∴x2+22=(10-x)2,
解得x=4.8,
∴BP=4.8;
②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:
由题可知,EM是△ABQ的中位线,
∴EM∥BQ,
∴∠BEM=90°=∠B,
∵PN⊥EM,
∴∠PNE=90°,EM=2EN,
∴四边形BPNE是矩形,
∴EN=BP=4.8,
∴EM=2EN=9.6.
故答案为:9.6.
【点睛】
本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
3、 (1)见解析
(2)
【解析】
【分析】
(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
(1)
连接PC,
∵PC=PB,
∴∠B=∠PCB,
∴∠APC=2∠B,
∵2∠B+∠DAB=180°,
∴∠DAP+∠APC=180°,
∴PC∥DA,
∵∠ADC=90°,
∴∠DCP=90°,
即DC⊥CP,
∴直线CD为⊙P的切线;
(2)
连接AC,
∵∠B=30°,
∴∠CPA=2∠B=60°,
∵AP=CP,∠CPA=60°,
∴△APC为等边三角形,
∵∠DCP=90°,
∴∠DCA=90°-∠ACP=90°-60°=30°,
∵AD=2,∠ADC=90°,
∴AC=2AD=4,
∴CD=.
【点睛】
本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
4、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
5、 (1)作图见解析
(2)证明见解析
【解析】
【分析】
(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
(1)
解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.
(2)
解:连接AD,如图
∵为直径
∴
∵
∴
∴
又∵AB为直径
∴AE是的切线.
【点睛】
本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试,共36页。试卷主要包含了如图,一把宽为2cm的刻度尺,如图所示,在的网格中,A,如图,将的圆周分成五等分等内容,欢迎下载使用。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题,共33页。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题,共34页。试卷主要包含了如图,将的圆周分成五等分,下列四个命题中,真命题是,在平面直角坐标系中,以点,在中,,,给出条件等内容,欢迎下载使用。