


初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试随堂练习题
展开九年级数学下册第二十九章直线与圆的位置关系专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为( )
A.12+2π B.4+π C.24+2π D.12+14π
2、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是( )
A.2,2 B.4,4 C.4,2 D.4,
3、如图,与相切于点,经过的圆心与交于,若,则( )
A. B. C. D.
4、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )
A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
5、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为( )
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
6、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是( )
A.相切 B.相交
C.相离、相切或相离 D.相切或相交
7、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为( )
A.1个 B.2个 C.3个 D.4个
8、如图,FA、FB分别与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为( )
A. B.2 C.2 D.3
9、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10 B.11 C.12 D.13
10、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是( )
A.30° B.36° C.60° D.72°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.
2、如图,AB,BC,CD分别与⊙O相切于点E、F、G三点,且AB∥CD,BO=6,CO=8,则BE+GC的长为_____.
3、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
4、如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且,过点A作量角器圆弧所在圆的切线,切点为E,则是______度.
5、如图,PB与⊙O相切于点B,OP与⊙O相交于点A,∠P=30°,若⊙O的半径为2,则OP的长为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
2、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.
(1)求证:AB是的切线;
(2)若,,求的半径.
3、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
(1)求证:直线DC是⊙O的切线;
(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
4、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.
(1)小明给出下列解答,请你补全小明的解答.
小明的解答
过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
∵OP+PQ>OQ,OQ>ON,
∴ .
又ON=OM+MN;
∴OP+PQ>OM+MN.
又 ,
∴ .
(2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
(3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
5、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.
(1)如图(1),连接.
①求的正切值;
②求点的坐标.
(2)如图(2),若点是的中点,作于点,连接,,,求证:.
-参考答案-
一、单选题
1、A
【解析】
【分析】
正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.
【详解】
解:正三角形的面积为:,
三个小半圆的面积为:,中间大圆的面积为:,
所以阴影部分的面积为:,
故选:
【点睛】
本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.
2、B
【解析】
【分析】
根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.
【详解】
解:如图,
∵正六边形的任一内角为120°,
∴∠ABD=180°-120°=60°,
∴∠BAD=30°,为等边三角形,
∵
∴
∴
∴
∴这个正六边形半径R和扳手的开口a的值分别是4,4.
故选:B.
【点睛】
本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.
3、B
【解析】
【分析】
连结CO,根据切线性质与相切于点,得出OC⊥BC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.
【详解】
解:连结CO,
∵与相切于点,
∴OC⊥BC,
∴∠COB+∠B=90°,
∵,
∴∠COB=90°-∠B=90°-40°=50°,
∴.
故选B.
【点睛】
本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.
4、A
【解析】
【分析】
首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
【详解】
解:∵△ABC的外心即是三角形三边垂直平分线的交点,
如图所示:EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(﹣2,﹣1).
故选:A
【点睛】
此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
5、B
【解析】
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:B.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
6、D
【解析】
【分析】
根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.
【详解】
解:的半径为8,,
点到直线的距离,
直线与的位置关系是相切或相交.
故选:D.
【点睛】
此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.
7、C
【解析】
【分析】
如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB•DC=DE•DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
【详解】
解:如图1,∵△ABC是等边三角形,
∴∠ABC=60°,
∵等边△ABC内接于⊙O,
∴∠ADC=∠ABC=60°,
故①正确;
∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
∴∠BDE=∠ADC,
又∠DBE=∠DAC,
∴△DBE∽△DAC,
∴,
∴DB•DC=DE•DA,
∵D是上任一点,
∴DB与DC不一定相等,
∴DB•DC与DB2也不一定相等,
∴DB2与DE•DA也不一定相等,
故②错误;
如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
∴∠ABK=∠ACD,
∴AB=AC,
∴△ABK≌△ACD(SAS),
∴AK=AD,S△ABK=S△ACD,
∴DH=KH=DK,
∵∠AHD=90°,∠ADH=60°,
∴∠DAH=30°,
∵AD=2,
∴DH=AD=1,
∴DK=2DH=2,,
∴S△ADK=,
∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
故③正确;
如图3,连接OA、OG、OC、GC,则OA=OG=OC,
∵CF切⊙O于点C,
∴CF⊥OC,
∵AF⊥CF,
∴AF∥OC,
∵∠AOC=2∠ABC=120°,
∴∠OAC=∠OCA=×(180°﹣120°)=30°,
∴∠CAG=∠OCA=30°,
∴∠COG=2∠CAG=60°,
∴∠AOG=60°,
∴△AOG和△COG都是等边三角形,
∴OA=OC=AG=CG=OG,
∴四边形OABC是菱形,
∴OA∥CG,
∴S△CAG=S△COG,
∴S阴影=S扇形COG,
∵∠OCF=90°,∠OCG=60°,
∴∠FCG=30°,
∵∠F=90°,
∴FG=CG,
∵FG2+CF2=CG2,CF=,
∴(CG)2+()2=CG2,
∴CG=4,
∴OC=CG=4,
∴S阴影=S扇形COG==,
故④正确,
∴①③④这3个结论正确,
故选C.
【点睛】
本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.
8、C
【解析】
【分析】
根据切线长定理可得,、、,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.
【详解】
解:FA、FB分别与⊙O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,
则:、、,,
∵∠F=60°,
∴为等边三角形,,
∵△FDE的周长为12,即,
∴,即,
作,如下图:
则,,
∴,
设,则,由勾股定理可得:,
解得,,
故选C
【点睛】
此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.
9、A
【解析】
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
10、B
【解析】
【分析】
求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.
【详解】
解:∵正五边形ABCDE中,
∴∠BCD==108°,CB=CD,
∴∠CBD=∠CDB=(180°-108°)=36°,
故选:B.
【点睛】
本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.
二、填空题
1、六
【解析】
【分析】
由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.
【详解】
解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:
∵半径与边长相等,
∴这个三角形是等边三角形,
∴正多边形的边数:360°÷60°=6,
∴这个正多边形是正六边形
故答案为:六.
【点睛】
本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.
2、10
【解析】
【分析】
先由切线长定理得到BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,再证明∠BOC=90°,然后利用勾股定理计算出BC即可.
【详解】
∵AB,BC,CD分别与⊙O相切于点E、F、G三点,
∴BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,
∴,,
∴,
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∴,
∴∠BOC=90°,
在Rt△OBC中,∵BO=6,CO=8,
∴,
∴BE+CG=10.
故答案为:10.
【点睛】
此题考查了切线长定理、切线的性质、勾股定理以及直角三角形的判定与性质.此题难度适中,正确理解切线长定理是解决本题的关键.
3、∠ABT=∠ATB=45°(答案不唯一)
【解析】
【分析】
根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
【详解】
解:添加条件:∠ABT=∠ATB=45°,
∵∠ABT=∠ATB=45°,
∴∠BAT=90°,
又∵AB是圆O的直径,
∴AT是圆O的切线,
故答案为:∠ABT=∠ATB=45°(答案不唯一).
【点睛】
本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
4、
5、4
【解析】
【分析】
连接OB,利用切线性质,判定三角形POB是直角三角形,利用直角三角形的性质,确定PO的长度即可.
【详解】
如图,连接OB,
∵PB与⊙O相切于点B,
∴∠PBO=90°,
∵∠P=30°,OB=2,
∴PO=4,
故答案为:4.
【点睛】
本题考查了切线性质,直角三角形的性质,熟练掌握切线的性质是解题的关键.
三、解答题
1、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
2、 (1)见解析
(2)2.4.
【解析】
【分析】
(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;
(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.
(1)
如图所示:过O作OD⊥AB交AB于点D.
∵OC⊥BC,且BO平分∠ABC,
∴OD=OC,
∵OC是圆O的半径
∴AB与圆O相切.
(2)
设圆O的半径为r,即OC=r,
∵
∴
∴
∵OC⊥BC,且OC是圆O的半径
∴BC是圆O的切线,
又AB是圆O的切线,
∴BD=BC=3r
在中,
∴
∴
在中,
∴
整理得,
解得,,(不合题意,舍去)
∴的半径为2.4
【点睛】
此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
3、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
4、 (1)OP+PQ>ON; OP=OM;PQ>MN
(2)见解析
(3)1<r<4
【解析】
【分析】
(1)利用两点之间线段最短解答即可;
(2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
(3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
(1)
理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
∵OP+PQ>OQ,OQ>ON,
∴OP+PQ>ON.
又ON=OM+MN;
∴OP+PQ>OM+MN.
又 OP=OM,
∴PQ>MN.
故答案为:OP+PQ>ON, OP=OM,PQ>MN;
(2)
解:如图,
⊙O是求作的图形;
(3)
(3)如图2,
作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
∴∠FEO′=∠AFE=90°,
∴AF∥EO′,
∴∠AEO′=∠BAC=60°,
∵AO′=EO′,
∴△ADO′是等边三角形,
∴AE=AO′,
∵AB=8,∠B=30°,
∴AC=AB=4,
∴AF=2,
∴⊙O的半径是1,
∴AE=AB=4,
∴1<r<4,
故答案是:1<r<4.
【点睛】
本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
5、 (1)①,②(4,3)
(2)见解析
【解析】
【分析】
(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
(1)
解:①以AB为直径的圆的圆心为P,
过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
则DH=HC=DC,四边形AOHF为矩形,
∴AF=OH,FH=OA=1,
解方程x2﹣4x+3=0,得x1=1,x2=3,
∵OC>OD,
∴OD=1,OC=3,
∴DC=2,
∴DH=1,
∴AF=OH=2,
设圆的半径为r,则PH2=,
∴PF=PH﹣FH,
在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
解得:r=,PH=2,PF=PH﹣FH=1,
∵∠AOD=90°,OA=OD=1,
∴AD=,
∵AB为直径,
∴∠ADB=90°,
∴BD===3,
∴tan∠ABD===;
②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
∴∠BEO=90°,
∵AB为直径,
∴∠AGB=90°,
∵∠AOE=90°,
∴四边形AOEG是矩形,
∴OE=AG,OA=EG=1,
∵AF=2,
∵PH⊥DC,
∴PH⊥AG,
∴AF=FG=2,
∴AG=OE=4,BG=2PF=2,
∴BE=3,
∴点B的坐标为(4,3);
(2)
证明:过点E作EH⊥x轴于H,
∵点E是的中点,
∴=,
∴ED=EB,
∵四边形EDCB为圆P的内接四边形,
∴∠EDH=∠EBF,
在△EHD和△EFB中,
,
∴△EHD≌△EFB(AAS),
∴EH=EF,DH=BF,
在Rt△EHC和Rt△EFC中,
,
∴Rt△EHC≌Rt△EFC(HL),
∴CH=CF,
∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.
【点睛】
本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。
2020-2021学年第29章 直线与圆的位置关系综合与测试优秀课后测评: 这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试优秀课后测评,共36页。试卷主要包含了如图,PA等内容,欢迎下载使用。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后作业题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后作业题,共34页。