


沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了如果点P,点P在第二象限内,P点到x,点P关于y轴对称点的坐标是.,在平面直角坐标系中,点P等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为( )A.(0,1) B.(2,0) C.(2,﹣1) D.(2,3)2、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限3、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)4、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b=( )A.﹣1 B.1 C.﹣5 D.55、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)6、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)7、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)8、在平面直角坐标系中,点P(﹣2,﹣3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A.先向左平移4个单位长度,再向上平移4个单位长度B.先向左平移4个单位长度,再向上平移8个单位长度C.先向右平移4个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向下平移8个单位长度10、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 ___.2、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.3、在平面直角坐标系中,与点关于原点对称的点的坐标是________.4、已知点A(a,﹣3)是点B(﹣2,b)关于原点O的对称点,则a+b=_____.5、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是___.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.2、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;(3)连接CE,CF,请直接写出△CEF的面积.3、如图,在平面直角坐标系中,已知线段AB;(1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;(2)作出△ABC关于y轴对称的△A'B'C';(3)连接BB',AA'.求四边形AA'B'B的面积.4、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(﹣3,2).(1)作△ABC关于x轴对称图形△A'B'C';(2)求△CAA'的面积.5、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .6、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.7、如图所示,在平面直角坐标系中,的顶点坐标分别是,和.(1)已知点关于轴的对称点的坐标为,求,的值;(2)画出,且的面积为 ;(3)画出与关于轴成对称的图形,并写出各个顶点的坐标.8、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?9、格点三角形(顶点是网格线的交点的三角形)△ABC在平面直角坐标系中的位置如图所示.(1)A点坐标为 ;A点关于y轴对称的对称点A1坐标为 .(2)请作出△ABC关于y轴对称的△A1B1C1; (3)请直接写出△A1B1C1的面积.10、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标. -参考答案-一、单选题1、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.2、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、A【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x轴对称,∴对称的点的坐标是(2,5).故选:A.【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).4、B【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.【详解】解:∵点P(﹣2,b)和点Q(a,﹣3),又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选:B.【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键.5、C【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】∵P点到x、y轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.6、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.7、A【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.8、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.9、B【分析】利用平移中点的变化规律求解即可.【详解】解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),∴点的横坐标减少4,纵坐标增加8,∴先向左平移4个单位长度,再向上平移8个单位长度.故选:B.【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.10、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.【详解】解:∵ A(-4,3) ,∴关于y轴对称点B的坐标为(4,3).故答案为:B.【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.二、填空题1、3【分析】根据点的纵坐标的绝对值是点到轴的距离,可得答案.【详解】在平面直角坐标系中,点P(2,﹣3)到轴的距离为3.故答案为:3.【点睛】本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离.2、(1,﹣1)【分析】先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.【详解】∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:OB=,由旋转的性质得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.3、(-3,-1)【分析】由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.【详解】解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).故答案为:(-3,-1).【点睛】本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.4、5【分析】根据关于原点对称的点的特点可得a,b的值,相加即可.【详解】解:∵点A(a,﹣3)是点B(﹣2,b)关于原点O的对称点,∴a=2,b=3,∴a+b=5.故答案为5.【点睛】本题考查了关于原点对称的点的特点,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.5、 (5,1)【分析】利用坐标点平移的性质:左右平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可.【详解】解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,所以平移后的点坐标为(5,1).故答案为:(5,1).【点睛】本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键.三、解答题1、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:△A2B2C2,即为所求.【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.2、(1)作图见详解;(2)作图见详解;(3)的面积为2.【分析】(1)直接在坐标系中描点,然后依次连线即可;(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.【详解】解:(1)如图所示,即为所求;(2)A、B、C三点关于x轴对称的点的坐标分别为:,,,然后描点、连线,∴即为所求;(3)由图可得:,∴的面积为2.【点睛】题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.3、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16【分析】(1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;(2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;(3)根据梯形面积公式即可求四边形AA'B'B的面积.【详解】解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);(2)△A'B'C'即为所求;(3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);∴四边形AA'B'B的面积为: = (2+6)×4=16.【点睛】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.4、(1)见解析;(2)16【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)直接根据三角形的面积公式求解即可.【详解】解:(1)如图所示,△A'B'C'即为所求.(2)△CAA'的面积为×8×4=16.【点睛】本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义和性质.5、(1)见解析;(2)见解析;(3)(a-5,-b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论.【详解】解:(1)如图,ABC即为所画.(2)如图,A1B1C1即为所画.(3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b). 故答案为:(a-5,-b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.6、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.7、(1),;(2)作图见详解;13;(3)作图见详解;,,.【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.【详解】解:(1)∵点关于x轴的对称点P的坐标为,∴,;(2)如图:即为所求,,故答案为:13;(3)如图:A、B、C点关于y轴的对称点为:,,,顺次连接,∴即为所求,,.【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.8、东经度,南纬度可以表示为.【分析】根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.【详解】解:由题意可知东经度,南纬度,可用有序数对表示.故东经度,南纬度表示为.【点睛】本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.9、(1)(-2,3);(2,3);(2)见解析;(3)【分析】(1)根据平面直角坐标系可得A点坐标,再根据关于y轴对称的点的坐标特点可得A1坐标;(2)首先确定A、B、C三点坐标,再连接即可;(3)根据割补求解可得答案.【详解】解:(1)A点坐标为 (-2,3);A点关于y轴对称的对称点A1坐标为 (2,3).故答案为:(-2,3);(2,3);(2)如图所示△A1B1C1;(3)△A1B1C1的面积:2×2-×1×2-×1×2-×1×1=.【点睛】本题主要考查了作图-轴对称变换,关键是掌握图形都是由点组成的,作轴对称图形,就是寻找特殊点的对称点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.10、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.【详解】解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的,关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1, B1C1,C1A1,则为所求,点B1(-5,-1);(2)∵关于轴对称的,∴点的坐标特征是横坐标互为相反数,纵坐标不变,∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),∴中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2, B2C2,C2A2,则为所求,点B2(5,1).【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共27页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习,共28页。试卷主要包含了已知点M等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共28页。试卷主要包含了已知A,在平面直角坐标系中,点P,平面直角坐标系内一点P,一只跳蚤在第一象限及x轴等内容,欢迎下载使用。
