搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系课时练习练习题(无超纲)

    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系课时练习练习题(无超纲)第1页
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系课时练习练习题(无超纲)第2页
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系课时练习练习题(无超纲)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试

    展开

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试,共31页。试卷主要包含了平面直角坐标系中,将点A,若点在第三象限,则点在.,点A个单位长度.等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系课时练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
    2、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是(  )
    A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)
    3、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )

    A.(2,2) B.(0,0) C.(0,2) D.(4,5)
    4、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:①B点的坐标为(,);②线段AB的长为3个单位长度;③线段AB所在的直线与x轴平行;④点M(,)可能在线段AB上;⑤点N(,)一定在线段AB上.其中正确的结论有( )
    A.2个 B.3个 C.4个 D.5个
    5、已知点M(2,﹣3),点N与点M关于x轴对称,则点N的坐标是(  )
    A.(﹣2,3) B.(﹣2,﹣3) C.(3,2) D.(2,3)
    6、若点在第三象限,则点在( ).
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7、点A(-3,1)到y轴的距离是(  )个单位长度.
    A.-3 B.1 C.-1 D.3
    8、根据下列表述,能够确定具体位置的是(  )
    A.北偏东25°方向 B.距学校800米处
    C.温州大剧院音乐厅8排 D.东经20°北纬30°
    9、在平面直角坐标系中,若点与点关于原点对称,则点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    10、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在(  )
    A.第四象限 B.第三象限 C.第二象限 D.第一象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在直角坐标系中,已知点P(a-2,2a+7),点Q(2,5),若直线PQ∥y轴,则线段PQ的长为_____.
    2、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为______.

    3、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.
    4、若点M(,a)关于y轴的对称点是点N(b,),则=________.
    5、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.

    (1)求证:△AOB≌△COD;
    (2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
    (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
    2、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.
    3、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
    已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).

    (1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
    (2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
    (3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
    4、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).

    (1)如图1,在BC上找一点P,使∠BAP=45°;
    (2)如图2,作△ABC的高BH.
    5、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).

    (1)请在如图所示的网格平面内作出平面直角坐标系.
    (2)请作出△ABC关于y轴对称的△A′B′C′.
    (3)求△ABC的面积 .
    6、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:
    (1)△ABC的面积为   ;
    (2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1;
    (3)在y轴上画出点Q,使QA+QC最小.(保留画的痕迹)

    7、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.

    (1)在图中作出关于轴对称的,并写出点的对应点的坐标;
    (2)在图中作出关于轴对称的,并写出点的对应点的坐标.
    8、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.
    (1)画出△ABC关于直线MN对称的.
    (2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..
    (3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)

    9、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).

    (1)请在图中画出△ABC关于y轴对称的△A1B1C1,
    (2)并写出△A1B1C1的各点坐标.
    10、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).

    (1)请画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;
    (2)请画出△ABC绕点B顺时针旋转90°后的△A2BC2;
    (3)求出(2)中△A2BC2的面积.

    -参考答案-
    一、单选题
    1、A
    【分析】
    由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
    【详解】
    解:由题意可知BO=CO,
    ∵又AB=AC,
    ∴AO⊥BC,
    ∴点A在y轴上,
    ∴选项A符合题意,
    B选项三点共线,不能构成三角形,不符合题意;
    选项C、D都不在y轴上,不符合题意;
    故选:A.
    【点睛】
    本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
    2、B
    【分析】
    由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.
    【详解】
    解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.
    故选B.
    【点睛】
    本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.
    3、B
    【分析】
    根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.
    【详解】
    解:∵A点坐标为(-2,-2),B点坐标为(4,-2),
    ∴可以建立如下图所示平面直角坐标系,
    ∴点C的坐标为(0,0),
    故选B.

    【点睛】
    本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.
    4、B
    【分析】
    根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤
    【详解】
    解:∵点A(,)沿着x的正方向向右平移()个单位后得到B点,
    ∴B点的坐标为(,);
    故①正确;
    则线段AB的长为;
    故②不正确;
    ∵A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等
    ∴线段AB所在的直线与x轴平行;
    故③正确
    若点M(,)在线段AB上;
    则,即,不存在实数
    故点M(,)不在线段AB上;
    故④不正确
    同理点N(,)在线段AB上;
    故⑤正确
    综上所述,正确的有①③⑤,共3个
    故选B
    【点睛】
    本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.
    5、D
    【分析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.
    【详解】
    ∵点M(2,﹣3),点N与点M关于x轴对称,
    ∴点N的坐标是(2,3),
    故选:D.
    【点睛】
    本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    6、A
    【分析】
    根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
    【详解】
    ∵点P(m,n)在第三象限,
    ∴m<0,n<0,
    ∴-m>0,-n>0,
    ∴点在第一象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    7、D
    【分析】
    由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.
    【详解】
    解:由题意知到轴的距离为
    到轴的距离是个单位长度
    故选D.
    【点睛】
    本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.
    8、D
    【分析】
    根据确定位置的方法即可判断答案.
    【详解】
    A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;
    B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;
    C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;
    D. 东经20°北纬30°可以确定一点的位置,故此选项正确.
    故选:D.
    【点睛】
    本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.
    9、B
    【分析】
    根据点(x,y)关于原点对称的点的坐标为(﹣x,﹣y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答.
    【详解】
    解:∵点与关于原点对称,
    ∴m=-2,m-n=﹣3,
    ∴n=1,
    ∴点M(-2,1)在第二象限,
    故选:B.
    【点睛】
    本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键.
    10、A
    【分析】
    直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
    【详解】
    ∵点P(m,1)在第二象限内,
    ∴m<0,
    ∴1﹣m>0,
    则点Q(1﹣m,﹣1)在第四象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    二、填空题
    1、10
    【分析】
    直线PQ∥y轴,则P、Q两点横坐标相等,有a-2=2,得a=4,则P点坐标为(2,15),PQ的长为=10.
    【详解】
    ∵直线PQ∥y轴
    ∴a-2=2
    ∴a=4
    ∴P点坐标为(2,15)
    PQ==10.
    故答案为10.
    【点睛】
    本题考查了平面直角坐标系,平面直角坐标系中两点之间的线段与x轴平行,两点之间距离为横坐标差的绝对值,两点之间的线段与y轴平行,两点之间距离为纵坐标差的绝对值.
    2、学习
    【分析】
    根据每一个点的坐标确定其对应的位置,最后写出答案.
    【详解】
    解:有序数对(5,3),(6,3)(7,3)(4,1)(4,4)对应的字母分别为S、T、U、D、Y,
    组成的英文单词为study,中文为学习,
    故答案为:学习.
    【点睛】
    此题考查了有序数对,正确理解有序数对的定义,确定各数对对应的字母是解题的关键.
    3、 (3,-7)
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),
    故答案为:(3,-7).
    【点睛】
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    4、1
    【分析】
    直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案.
    【详解】
    解:∵点M(,a)关于y轴的对称点是点N(b,),
    ∴b=-,a=,
    则=1.
    故答案为:1.
    【点睛】
    此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键.
    5、 (9,6)
    【分析】
    根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.
    【详解】
    解:根据题意,如图:

    ∴有序数对的数是;
    由图可知,中含有4个数,中含有9个数,中含有16个数;
    ……
    ∴中含有64个数,且奇数行都是从左边第一个数开始,
    ∵,
    ∴是第九行的第6个数;
    ∴数位置为有序数对是(9,6).
    故答案为:;(9,6).
    【点睛】
    此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.
    三、解答题
    1、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据即可证明;
    (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
    (3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
    【详解】
    (1)轴于点,轴于点,

    ,,
    ,,

    (2)

    如图2,过点作轴,交于点,


    轴,



    ,,,

    在与中,


    ,即点为中点;
    (3)

    如图3,延长到,使,连接,,延长交于点,
    ,,,

    ,,





    ,,




    ,,

    ,即.
    【点睛】
    本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
    2、
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.
    【详解】
    解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,
    ∴,
    解得,
    ∴a+b=.
    【点睛】
    本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    3、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
    【分析】
    (1)根据一次反射点和二次反射点的定义求解即可;
    (2)根据二次反射点的意义求解即可;
    (3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
    【详解】
    解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
    点A关于直线:x=2的二次反射点为(5,1)
    故答案为: (-1,1);(5,1).
    (2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,

    解得,
    故答案为: -2.
    (3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
    当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
    ∵当与点B重合时,=-2,
    ∴当<-2时,△与△BCD无公共点.
    当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
    ∵当与点D重合时,=1,
    ∴当>1时,△与△BCD无公共点.
    综上,若△与△BCD无公共点,的取值范围是<-2,或>1.

    【点睛】
    本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
    4、(1)见解析;(2)见解析
    【分析】
    (1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
    (2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
    【详解】
    解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,

    理由如下:
    根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
    ∴△ABM≌△BNQ,
    ∴AB=BN,∠ABM=∠BNQ,
    ∴∠BAP=∠BNP,
    ∵∠NBQ+∠BNQ=90°,
    ∴∠ABM +∠BNQ=90°,
    ∴∠ABN=90°,
    ∴∠BAP=∠BNP=45°;
    (2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.

    理由如下:
    过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
    ∴△ACD≌△QBG,
    ∴∠ACD=∠QBG,
    ∵∠QBG+∠BQG=90°,
    ∴∠ACD +∠BQG=90°,
    ∴∠CHQ=90°,
    ∴BH⊥AC,即BH为△ABC的高.
    【点睛】
    本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    5、
    (1)见解析;
    (2)见解析;
    (3)4.
    【分析】
    (1)根据点坐标直接确定即可;
    (2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;
    (3)利用面积加减法计算.
    (1)
    如图所示:
    (2)
    解:如图所示:
    (3)
    解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,
    故答案为:4.
    【点睛】
    此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.
    6、(1)5;(2)见解析;(3)见解析
    【分析】
    (1)利用“补全矩形法”求解△ABC的面积;
    (2)找到A、B、C三点关于x轴的对称点,顺次连接可得△A1B1C1;
    (3)作点A关于y轴的对称点A',连接A'C,则A'C与y轴的交点即是点Q的位置.
    【详解】
    解:(1)如图所示:

    S△ABC=3×4-×2×2-×2×3-×4×1=5.
    (2)如图所示:

    (3)如图所示:

    【点睛】
    本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.
    7、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
    【分析】
    (1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
    (2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
    然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
    【详解】
    解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    关于轴对称的,
    关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
    ∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
    在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
    顺次连接A1B1, B1C1,C1A1,
    则为所求,点B1(-5,-1);
    (2)∵关于轴对称的,
    ∴点的坐标特征是横坐标互为相反数,纵坐标不变,
    ∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    ∴中点A2(6,6),点B2(5,1),点C2(1,6),
    在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
    顺次连接A2B2, B2C2,C2A2,
    则为所求,点B2(5,1).

    【点睛】
    本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
    8、(1)画图见解析;(2),;(3)画图见解析
    【分析】
    (1)分别确定关于对称的对称点 再顺次连接从而可得答案;
    (2)根据在坐标系内的位置直接写其坐标与的长度即可;
    (3)先确定关于的对称点,再连接 交于 则 从而可得答案.
    【详解】
    解:(1)如图1,是所求作的三角形,

    (2)如图1,为坐标原点,


    (3)如图2,点即为所求作的点.

    【点睛】
    本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.
    9、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
    【分析】
    (1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
    (2)根据所作图形可得答案.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求作.

    (2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
    10、(1)见解析,(﹣2,4);(2)见解析;(3)3.5
    【分析】
    (1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;
    (2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;
    (3)用一个矩形的面积分别减去三个直角三角形的面积去计算△A2BC2的面积.
    【详解】
    解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣2,4);
    (2)如图,△A2BC2为所作;

    (3)△A2BC2的面积=3×3﹣×3×1﹣×2×1﹣×3×2=3.5.
    【点睛】
    本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题,共28页。试卷主要包含了点A的坐标为,则点A在,平面直角坐标系内一点P,点A个单位长度.,平面直角坐标系中,点P等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共27页。试卷主要包含了已知点在一,若点P,如果点P,已知A等内容,欢迎下载使用。

    初中数学第十五章 平面直角坐标系综合与测试课后作业题:

    这是一份初中数学第十五章 平面直角坐标系综合与测试课后作业题,共34页。试卷主要包含了点M,点P,点在,已知点A等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map