2020-2021学年第十五章 平面直角坐标系综合与测试精练
展开
这是一份2020-2021学年第十五章 平面直角坐标系综合与测试精练,共26页。试卷主要包含了已知点A,直角坐标系中,点A与点B关于,平面直角坐标系内一点P等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号2、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.3、在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )A.m=3,n=2 B.m=,n=2 C.m=2,n=3 D.m=,n=4、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、在平面直角坐标系中,点关于x轴对称的点的坐标是( )A. B. C. D.6、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )A.5 B.1 C. D.7、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)8、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A.原点中心对称 B.轴轴对称 C.轴轴对称 D.以上都不对9、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是( )A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)10、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.2、若点关于原点的对称点是,则______.3、在直角坐标系中,已知点P(a-2,2a+7),点Q(2,5),若直线PQ∥y轴,则线段PQ的长为_____.4、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.5、点在直角坐标系的轴上,等于 ____.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,已知线段AB;(1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;(2)作出△ABC关于y轴对称的△A'B'C';(3)连接BB',AA'.求四边形AA'B'B的面积.2、已知点P(3a﹣15,2﹣a).(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.3、如图,图中的小方格都 是边长为1的正方形,△ABC的顶点坐标为A、B、C三点.(1)写出顶点A、B、C三点的坐标; (2)请在图中画出△ABC关于y轴对称的图形△A′B′C′; (3)写出点B′和点C′的坐标.4、如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.(2)求使△APO为等腰三角形的点P的坐标.5、如图,在平面直角坐标系中,点A的坐标为A(0,6),点B的坐标为B(8, 0),点P从点A出发,沿折线A→O→B以每秒1个单位长度的速度向终点B运动;点Q从B点出发,沿折线B→O→A以每秒3个单位长度的速度向终点A运动.P,Q两点同时出发,当其中一点到达终点时另一点也停止运动.直线l经过原点O,分别过P,Q两点作PE⊥l于E,QF⊥l于点F,设点P的运动时间为t(秒):(1)当P,Q两点相遇时,求t的值;(2)在整个运动过程中,用含t的式子表示Q点的坐标;(3)在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能否全等?若能全等,请求出Q点的坐标,若不能全等,请说明理由.6、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1 (1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个7、如图,ABCDx轴,且AB=CD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.8、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.9、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).(1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1;(2)作出ABC关于点O的中心对称图形A2B2C2;(3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标.10、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、.(1)画出将关于点对称的图形;(2)写出点、、的坐标. -参考答案-一、单选题1、D【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.2、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、B【分析】由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.【详解】解:∵点A(m,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数.∴m=-3,n=2.故答案为:B.【点睛】本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键.4、D【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、C【分析】根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解【详解】解:点关于x轴对称的点的坐标是 故选:C【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键.6、D【分析】点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.【详解】∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,∴a=-3,b=-2,∴-5,故选D.【点睛】本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.7、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.【详解】解:∵ A(-4,3) ,∴关于y轴对称点B的坐标为(4,3).故答案为:B.【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.8、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.故选A.【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.9、B【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.【详解】解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).故选:B.【点睛】此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.10、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.二、填空题1、或【分析】根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.【详解】解:∵点,,且ABx轴,∴y=2,∵点到轴的距离是到轴距离的2倍,∴,∴,∴B(-4,2)或(4,2).故答案为(-4,2)或(4,2).【点睛】本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.2、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:由关于坐标原点的对称点为,得,,解得:故答案为:.【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.3、10【分析】直线PQ∥y轴,则P、Q两点横坐标相等,有a-2=2,得a=4,则P点坐标为(2,15),PQ的长为=10.【详解】∵直线PQ∥y轴∴a-2=2∴a=4∴P点坐标为(2,15)PQ==10.故答案为10.【点睛】本题考查了平面直角坐标系,平面直角坐标系中两点之间的线段与x轴平行,两点之间距离为横坐标差的绝对值,两点之间的线段与y轴平行,两点之间距离为纵坐标差的绝对值.4、【分析】点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为,而 , 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.5、-1【分析】让纵坐标为0得到m的值,计算可得点P的坐标.【详解】解:∵点P(3,m+1)在直角坐标系x轴上,∴m+1=0,解得m=-1,故选:-1.【点睛】考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.三、解答题1、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16【分析】(1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;(2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;(3)根据梯形面积公式即可求四边形AA'B'B的面积.【详解】解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);(2)△A'B'C'即为所求;(3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);∴四边形AA'B'B的面积为: = (2+6)×4=16.【点睛】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.2、(1)或;(2)或;(3)或.【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案.【详解】解:(1)点到轴的距离是1,且,,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,,解得,点的横、纵坐标都是整数,或,当时,,则点的坐标为,当时,,则点的坐标为,综上,点的坐标为或.【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.3、(1)A( 0, -2 ),B( 3 , -1 ),C( 2, 1 );(2)图见解析;(3)(-3,-1 ),(-2,1 )【分析】(1)根据三角形在坐标中的位置可得;(2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(3)利用点的坐标的表示方法求解.【详解】解:(1)△ABC的各顶点坐标:A(0,-2)、B(3,-1)、C(2,1);(2)△A′B′C′如图所示:(3)(-3,-1 ),(-2,1 ).【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.4、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)【分析】(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;(2)先计算出OA的长,再分类讨论:当OP=OA或AP=AO或PO=PA时,利用直角坐标系分别写出对应的P点坐标.【详解】解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,(2)如图,设P点坐标为(t,0),,当OP=OA时,P点坐标为或;当AP=AO时,P点坐标为(4,0),当PO=PA时,P点坐标为(2,0),综上所述,P点坐标为或或(4,0)或(2,0).【点睛】本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.5、(1)秒;(2)Q(,0)或 Q(0,);(3)能全等,(5,0)或(0,)【分析】(1)由P,Q两点相遇即P,Q两点运动的路程和为OB+OA=8+6,据此列方程求解即可;(2)分点Q在线段OB上和在线段OA上两种情况讨论,即可求解;(2)分三种情况讨论,根据全等三角形的性质即可求解.【详解】解:(1)∵点A的坐标为A(0,6),点B的坐标为B(8, 0),∴OA=6,OB=8,根据题意得:,∴,解得: ∴当P,Q两点相遇时,的值为秒;(2)∵点Q可能在线段OB上,也可能在线段OA上.∴①当点Q在线段OB上时:Q(8-3t,0);②当点Q在线段OA上时:Q(0,3t-8);综上,Q点的坐标为(8-3t,0)或(0,3t-8);(3)答:在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能全等.理由:①当时,点Q在OB上,点P在OA上,∵∠PEO=∠QFO=90°,∴∠POE+∠QOF=90°,∠OQF+∠QOF=90°,∴∠POE=∠OQF,∴△POE≌△OQF,∴PO=QO,即:,解得:t=1; ②当时,点Q在OA上,点P也在OA上,∵∠PEO=∠QFO=90°,∠POE=∠QOF(公共角),即P,Q重合时,△POE≌△QOF,∴PO=QO,即:,解得:; 当点Q运动到A点时,P点还未到达O点,所以不存在这种种情况∵当t=1时,点Q在x轴上,(5,0);当t=时,点Q在y轴上,(0,)∴当Q点坐标为(5,0)或(0,)时,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形全等.【点睛】本题考查了坐标与图形,全等三角形的性质,一元一次方程的应用,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.6、(1)见解析;-1,4 ;-3,1;-3,5;(2)5【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)分AB为腰和AB为底分别求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.A1(-1,4) ;B1(-3,1);C1(-3,5);故答案为:-1,4 ;-3,1;-3,5;(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;以AB为底边的等腰三角形,且点D在y轴上的点只有1个;所以这样的点D共有5个,故答案为:5.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.7、B(2,1),D(﹣2,﹣1).【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据AB=CD=3得出横坐标.【详解】解:∵AB∥CD∥x轴,A点坐标为(﹣1,1),点C(1,﹣1),∴点B、D的纵坐标分别是1,﹣1,∵AB=CD=3,∴点B、D的横坐标分别是-1+3=2,1-3=-2,∴B(2,1),D(﹣2,﹣1).【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.8、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.【详解】解:∵的顶点坐标分别为,绕点顺时针旋转,得到,∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则△A1B1C1为所求;,=,=,=2.【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.9、(1)见解析;(2)见解析;(3)【分析】(1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得【详解】(1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)【点睛】本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键.10、(1)见解析;(2),,.【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2),,.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试,共26页。试卷主要包含了已知点A象限,在平面直角坐标系xOy中,点A,在下列说法中,能确定位置的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共27页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共29页。试卷主要包含了根据下列表述,能确定位置的是,点P关于y轴对称点的坐标是.,点P在第二象限内,P点到x等内容,欢迎下载使用。