搜索
    上传资料 赚现金
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系月考试卷(含答案解析)
    立即下载
    加入资料篮
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系月考试卷(含答案解析)01
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系月考试卷(含答案解析)02
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系月考试卷(含答案解析)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业

    展开
    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业,共30页。试卷主要包含了点A的坐标为,则点A在,若点P,如图,A,在平面直角坐标系中,点等内容,欢迎下载使用。

    七年级数学第二学期第十五章平面直角坐标系月考
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,若点与点关于原点对称,则点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:①B点的坐标为(,);②线段AB的长为3个单位长度;③线段AB所在的直线与x轴平行;④点M(,)可能在线段AB上;⑤点N(,)一定在线段AB上.其中正确的结论有( )
    A.2个 B.3个 C.4个 D.5个
    3、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5 个单位至点A4(3,2),…,依此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )

    A.(﹣2020,1010) B.(﹣1011,1010) C.(1011,1010) D.(2020,1010)
    4、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).

    A. B. C. D.
    5、点A的坐标为,则点A在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6、若点P(2,b)在第四象限内,则点Q(b,-2)所在象限是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )

    A.(2,2) B.(0,0) C.(0,2) D.(4,5)
    8、在平面直角坐标系中,点的坐标为,将点向左平移个单位长度,再向上平移个单位长度得到点,则点的坐标为( )
    A. B. C. D.
    9、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是(  )
    A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)
    10、点P的坐标为(﹣3,2),则点P位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知点在第二象限,且离轴的距离为3,则____.
    2、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.
    3、点关于x轴对称的点的坐标为________.
    4、在平面直角坐标系中,点A(﹣3,1)绕原点逆时针旋转180°得到的点A'的坐标是 _____.
    5、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
    (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
    (2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.

    2、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.
    3、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.
    (1)画出△ABC关于直线MN对称的.
    (2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..
    (3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)

    4、如图,在平面直角坐标系xOy中,A(1,﹣2).
    (1)作△ABC关于y轴的对称图形△A′B′C′;
    (2)写出B′和C′的坐标;
    (3)求△ABC的面积.

    5、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).

    (1)如图1,在BC上找一点P,使∠BAP=45°;
    (2)如图2,作△ABC的高BH.
    6、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).
    (1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;
    (2)在图中作出A1B1C1关于y轴对称的A2B2C2;
    (3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 .

    7、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(﹣3,2).
    (1)作△ABC关于x轴对称图形△A'B'C';
    (2)求△CAA'的面积.

    8、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形.
    例如:点P(2,1)的伴随图形是点P'(-2,-1).
    (1)点Q(-3,-2)的伴随图形点Q'的坐标为 ;
    (2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).
    ①当t=-1,且直线m与y轴平行时,点A的伴随图形点A'的坐标为 ;
    ②当直线m经过原点时,若△ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.
    9、如图所示的方格纸中,每个小方格的边长都是,点,,.
    (1)作关于轴对称的;
    (2)通过作图在轴上找出点,使最小,并直接写出点的坐标.

    10、如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.
    (1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.
    (2)求使△APO为等腰三角形的点P的坐标.


    -参考答案-
    一、单选题
    1、B
    【分析】
    根据点(x,y)关于原点对称的点的坐标为(﹣x,﹣y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答.
    【详解】
    解:∵点与关于原点对称,
    ∴m=-2,m-n=﹣3,
    ∴n=1,
    ∴点M(-2,1)在第二象限,
    故选:B.
    【点睛】
    本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键.
    2、B
    【分析】
    根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤
    【详解】
    解:∵点A(,)沿着x的正方向向右平移()个单位后得到B点,
    ∴B点的坐标为(,);
    故①正确;
    则线段AB的长为;
    故②不正确;
    ∵A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等
    ∴线段AB所在的直线与x轴平行;
    故③正确
    若点M(,)在线段AB上;
    则,即,不存在实数
    故点M(,)不在线段AB上;
    故④不正确
    同理点N(,)在线段AB上;
    故⑤正确
    综上所述,正确的有①③⑤,共3个
    故选B
    【点睛】
    本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.
    3、C
    【分析】
    根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
    【详解】
    解:观察发现,第2次跳动至点的坐标是(2,1),
    第4次跳动至点的坐标是(3,2),
    第6次跳动至点的坐标是(4,3),
    第8次跳动至点的坐标是(5,4),

    ∴第2n次跳动至点的坐标是(n+1,n),
    ∴第2020次跳动至点的坐标是(1010+1,1010)即(1011,1010).
    故选C.
    【点睛】
    本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
    4、A
    【分析】
    画出旋转平移后的图形即可解决问题.
    【详解】
    解:旋转,平移后的图形如图所示,,

    故选:A
    【点睛】
    本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.
    5、A
    【分析】
    应先判断出点的横纵坐标的符号,进而判断点所在的象限.
    【详解】
    解:由题意,
    ∵点A的坐标为,
    ∴点A在第一象限;
    故选:A
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    6、C
    【分析】
    根据点P(2,b)在第四象限内,确定的符号,即可求解.
    【详解】
    解:点P(2,b)在第四象限内,∴,
    所以,点Q(b,-2)所在象限是第三象限,
    故选:C.
    【点睛】
    本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.
    7、B
    【分析】
    根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.
    【详解】
    解:∵A点坐标为(-2,-2),B点坐标为(4,-2),
    ∴可以建立如下图所示平面直角坐标系,
    ∴点C的坐标为(0,0),
    故选B.

    【点睛】
    本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.
    8、A
    【分析】
    利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.
    【详解】
    解:∵点A的坐标为(2,1),将点A向左平移3个单位长度,再向上平移1个单位长度得到点A′,
    ∴点A′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).
    故选:A.
    【点睛】
    本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.
    9、A
    【分析】
    根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.
    【详解】
    解:∵点(2,﹣5)关于x轴对称,
    ∴对称的点的坐标是(2,5).
    故选:A.
    【点睛】
    本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).
    10、B
    【分析】
    根据平面直角坐标系中四个象限中点的坐标特点求解即可.
    【详解】
    解:∵点P的坐标为(﹣3,2),
    ∴则点P位于第二象限.
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
    二、填空题
    1、8
    【分析】
    根据题意可得,求出的值,代入计算即可.
    【详解】
    解:点在第二象限,且离轴的距离为3,

    解得,



    故答案为:8.
    【点睛】
    本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出的值是解本题的关键.
    2、
    【分析】
    点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.
    【详解】
    解: 线段CD是由线段AB平移得到的,点的对应点为,




    故答案为:
    【点睛】
    本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.
    3、 (-2,-5)
    【分析】
    关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
    【详解】
    解:由点关于轴对称点的坐标为:,
    故答案为:.
    【点睛】
    本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.
    4、(3,﹣1)
    【分析】
    由条件可知A点和A′点关于原点对称,可求得答案.
    【详解】
    解:∵将OA绕原点O逆时针旋转180°得到OA′,
    ∴A点和A′点关于原点对称,
    ∵A(﹣3,1),
    ∴A′(3,﹣1),
    故答案为:(3,﹣1).
    【点睛】
    本题主要考查旋转的定义,由条件求得A和A′关于原点对称是解题的关键.
    5、(1,﹣1)
    【分析】
    先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.
    【详解】
    ∵点A的坐标为(1,0),
    ∴OA=1,
    ∵四边形OABC是正方形,
    ∴∠OAB=90°,AB=OA=1,
    ∴B(1,1),
    连接OB,如图:

    由勾股定理得:OB=,
    由旋转的性质得:OB=OB1=OB2=OB3=…=,
    ∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
    相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
    ∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,
    发现是8次一循环,则2022÷8=252…6,
    ∴点B2022的坐标为(1,﹣1),
    故答案为:(1,﹣1).
    【点睛】
    本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.
    三、解答题
    1、(1)6,30°;(2)见解析,30
    【分析】
    (1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
    (2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
    【详解】
    (1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
    答案:6,30°
    (2)如图所示:

    ∵A(5,30),B(12,120),
    ∴∠BOX=120°,∠AOX=30°,
    ∴∠AOB=90°,
    ∵OA=5,OB=12,
    ∴△AOB的面积为OA·OB=30.
    【点睛】
    本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
    2、
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.
    【详解】
    解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,
    ∴,
    解得,
    ∴a+b=.
    【点睛】
    本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    3、(1)画图见解析;(2),;(3)画图见解析
    【分析】
    (1)分别确定关于对称的对称点 再顺次连接从而可得答案;
    (2)根据在坐标系内的位置直接写其坐标与的长度即可;
    (3)先确定关于的对称点,再连接 交于 则 从而可得答案.
    【详解】
    解:(1)如图1,是所求作的三角形,

    (2)如图1,为坐标原点,


    (3)如图2,点即为所求作的点.

    【点睛】
    本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.
    4、(1)见解析;(2)B′(﹣5,6),C′(-7,2);(3)16
    【分析】
    (1)利用轴对称的性质分别作出A,B,C的对应点A′,B′,C′即可;
    (2)根据点的位置写出坐标即可;
    (3)把三角形面积看成长方形面积减去周围三个三角形面积即可.
    【详解】
    解:(1)如图,△A′B′C′即为所求;

    (2)B′(﹣5,6),C′(-7,2);
    (3)S△ABC=8×6﹣×8×4﹣×2×4﹣×6×4=16.
    【点睛】
    本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.
    5、(1)见解析;(2)见解析
    【分析】
    (1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
    (2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
    【详解】
    解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,

    理由如下:
    根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
    ∴△ABM≌△BNQ,
    ∴AB=BN,∠ABM=∠BNQ,
    ∴∠BAP=∠BNP,
    ∵∠NBQ+∠BNQ=90°,
    ∴∠ABM +∠BNQ=90°,
    ∴∠ABN=90°,
    ∴∠BAP=∠BNP=45°;
    (2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.

    理由如下:
    过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
    ∴△ACD≌△QBG,
    ∴∠ACD=∠QBG,
    ∵∠QBG+∠BQG=90°,
    ∴∠ACD +∠BQG=90°,
    ∴∠CHQ=90°,
    ∴BH⊥AC,即BH为△ABC的高.
    【点睛】
    本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    6、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)
    【分析】
    (1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;
    (2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;
    (3)利用平移变换的性质,轴对称变换的性质解决问题即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求;
    (2)如图,△A2B2C2即为所求;

    (3)由题意得:P(﹣a﹣4,b﹣5).
    故答案为:(﹣a﹣4,b﹣5);
    【点睛】
    本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.
    7、(1)见解析;(2)16
    【分析】
    (1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;
    (2)直接根据三角形的面积公式求解即可.
    【详解】
    解:(1)如图所示,△A'B'C'即为所求.

    (2)△CAA'的面积为×8×4=16.
    【点睛】
    本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义和性质.
    8、
    (1)(3,2)
    (2)①(3,-1);②-1<t<1或2<t<4
    【分析】
    (1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;
    (2)①时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线,、、三点的轴,的伴随图形点坐标依次表示为:,,,由题意可得,或解出的取值范围即可.
    (1)
    解:由题意知沿轴翻折得点坐标为;
    沿轴翻折得点坐标为
    故答案为:.
    (2)
    ①解:.,点坐标为,直线为,
    沿轴翻折得点坐标为
    沿直线翻折得点坐标为即为
    故答案为:
    ②解:∵直线经过原点
    ∴直线为
    ∴、、的伴随图形点坐标先沿轴翻折,点坐标依次为,,;
    然后沿直线翻折,点坐标依次表示为:,,
    由题意可知:或
    解得:或
    【点睛】
    本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.
    9、(1)见解析;(2)见解析,点P的坐标为(−3,0)
    【分析】
    (1)先分别作出点A、B、C关于y轴的对称点,然后再顺次连接可得;
    (2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,再确定点P的坐标即可.
    【详解】
    解:(1)如图所示:即为所求.

    (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)

    【点睛】
    本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.
    10、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)
    【分析】
    (1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;
    (2)先计算出OA的长,再分类讨论:当OP=OA或AP=AO或PO=PA时,利用直角坐标系分别写出对应的P点坐标.
    【详解】
    解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,

    (2)如图,设P点坐标为(t,0),


    当OP=OA时,P点坐标为或;
    当AP=AO时,P点坐标为(4,0),
    当PO=PA时,P点坐标为(2,0),
    综上所述,P点坐标为或或(4,0)或(2,0).
    【点睛】
    本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共33页。试卷主要包含了已知点A象限,下列各点,在第一象限的是,在平面直角坐标系中,点P,已知A等内容,欢迎下载使用。

    数学七年级下册第十五章 平面直角坐标系综合与测试练习题: 这是一份数学七年级下册第十五章 平面直角坐标系综合与测试练习题,共30页。试卷主要包含了已知点A,平面直角坐标系中,点P,根据下列表述,能确定位置的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共33页。试卷主要包含了平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map