搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项攻克试题(含详细解析)

    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项攻克试题(含详细解析)第1页
    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项攻克试题(含详细解析)第2页
    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项攻克试题(含详细解析)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版第29章 直线与圆的位置关系综合与测试练习

    展开

    这是一份冀教版第29章 直线与圆的位置关系综合与测试练习,共37页。试卷主要包含了下列四个命题中,真命题是,在中,,,给出条件等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( )
    A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相交
    C.与x轴相交,与y轴相切 D.与x轴相交,与y轴相交
    2、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π
    3、在ABC中,∠B=45°,AB=6;①AC=4;②AC=8;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
    A.① B.② C.③ D.①或③
    4、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为(  )
    A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
    5、下列四个命题中,真命题是( )
    A.相等的圆心角所对的两条弦相等 B.三角形的内心是到三角形三边距离相等的点
    C.平分弦的直径一定垂直于这条弦 D.等弧就是长度相等的弧
    6、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是(  )
    A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内
    C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外
    7、的边经过圆心,与圆相切于点,若,则的大小等于( )

    A. B. C. D.
    8、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )

    A.4m2 B.12m2 C.24m2 D.24m2
    9、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
    A.① B.② C.③ D.①或③
    10、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
    ①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

    2、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:
    已知:⊙O(纸片),其半径为.
    求作:一个正方形,使其面积等于⊙O的面积.
    作法:①如图1,取⊙O的直径,作射线,过点作的垂线;
    ②如图2,以点为圆心,为半径画弧交直线于点;
    ③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;
    ④取的中点,以点为圆心,为半径画半圆,交射线于点;
    ⑤以为边作正方形.
    正方形即为所求.

    根据上述作图步骤,完成下列填空:
    (1)由①可知,直线为⊙O的切线,其依据是________________________________.
    (2)由②③可知,,,则_____________,____________(用含的代数式表示).
    (3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.
    3、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.

    4、半径为3cm的圆内有长为的弦,则此弦所对的圆周角的度数为______.
    5、如图,在⊙O中,AB是⊙O的内接正六边形的一边,BC是⊙O的内接正十边形的一边,则∠ABC=______°.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.

    (1)求证:是的切线;
    (2)若,,求半径的长.
    2、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
    3、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.

    (1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
    (2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
    ①线段;②线段;③线段
    (3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
    (4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.
    4、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.

    (1)试判断直线与的位置关系,并说明理由;
    (2)若,,求阴影部分的面积(结果保留).
    5、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.

    (1)求证:是的切线;
    (2)若,求阴影部分的面积.(结果保留)

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若dr,则直线与圆相离.
    【详解】
    解:∵点(2,3)到x轴的距离是3,等于半径,
    到y轴的距离是2,小于半径,
    ∴圆与y轴相交,与x轴相切.
    故选B.
    【点睛】
    本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
    2、B
    【解析】
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    3、B
    【解析】
    【分析】
    作AD⊥BC于D,求出AD的长,根据直线和圆的位置关系判断即可.
    【详解】
    解:作AD⊥BC于D,
    ∵∠B=45°,AB=6;
    ∴,
    设三角形ABC1的外接圆为O,连接OA、OC1,
    ∵∠B=45°,
    ∴∠O=90°,
    ∵外接圆半径为4,
    ∴;

    ∴以点A为圆心,AC为半径画圆,如图所示,当AC=4时,圆A与射线BD没有交点;
    当AC=8时,圆A与射线BD只有一个交点;当AC= 时,圆A与射线BD有两个交点;
    故选:B.

    【点睛】
    本题考查了直角三角形的性质和射线与圆的交点,解题关键是求出AC长和点A到BC的距离.
    4、B
    【解析】
    【分析】
    根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
    即点A到圆心O的距离小于圆的半径,
    ∴点A在⊙O内.
    故选:B.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    5、B
    【解析】
    【分析】
    利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.
    【详解】
    解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;
    B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;
    C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;
    D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;
    故选:B
    【点睛】
    本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.
    6、D
    【解析】
    【分析】
    如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
    【详解】
    解:如图所示,连接DP,CP,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∵AP=3,AB=8,
    ∴BP=AB-AP=5,
    ∵,
    ∴PB=PD,
    ∴,
    ∴点C在圆P外,点B在圆P上,
    故选D.

    【点睛】
    本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
    7、A
    【解析】
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    8、D
    【解析】
    【分析】
    先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
    【详解】
    解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
    由题意得:BC=4cm,
    ∵六边形ABCD是正六边形,
    ∴∠BOC=360°÷6=60°,
    又∵OB=OC,
    ∴△OBC是等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    故选D.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
    9、B
    【解析】
    【分析】
    画出图形,作,交BE于点D.根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断①②;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意.
    【详解】
    如图,,,点C在射线上.作,交BE于点D.
    ∵,
    ∴为等腰直角三角形,
    ∴,
    ∴不存在的三角形ABC,故①不符合题意;
    ∵,,AC=8,
    而AC>6,
    ∴存在的唯一三角形ABC,
    如图,点C即是.

    ∴,使得BC的长唯一成立,故②符合题意;
    ∵,,
    ∴存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点C和即为使的外接圆的半径等于4的点.

    故③不符合题意.
    故选B.
    【点睛】
    本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.
    10、C
    【解析】
    【分析】
    如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
    【详解】
    解:如图,五边形ABCDE为正五边形,
    ∴五边形的每个内角均为108°,

    ∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
    ∴∠BGF=∠BFG=72°,




    设AF=x,则AC=1+x,


    解得:,
    经检验:不符合题意,舍去,

    故选C
    【点睛】
    本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
    二、填空题
    1、①②④
    【解析】
    【分析】
    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
    【详解】
    解:连接OM,

    ∵PE为的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    即AM平分,故①正确;
    ∵AB为的直径,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,故②正确;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴的长为,故③错误;
    ∵,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,,,
    ∴,
    又∵,
    ∴,
    设,则,
    ∴,
    在中,,
    ∴,
    ∴,
    由①可得,

    故④正确,
    故答案为:①②④.
    【点睛】
    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    2、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3)
    【解析】
    【分析】
    (1)根据切线的定义判断即可.
    (2)由=AC+,计算即可;根据计算即可.
    (3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.
    【详解】
    解:(1)∵⊙O的直径,作射线,过点作的垂线,
    ∴经过半径外端且垂直于这条半径的直线是圆的切线;
    故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;
    (2)根据题意,得AC=r,==πr,
    ∴=AC+=r+πr,
    ∴=;
    ∵,
    ∴MA=-r=,
    故答案为:,;
    (3)如图,连接ME,
    根据勾股定理,得
    =
    =;

    故答案为:.
    【点睛】
    本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.
    3、65
    【解析】
    【分析】
    根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.
    【详解】
    解:∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴,
    ∵∠APO=25°,
    ∴,
    故答案为:65.
    【点睛】
    本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    4、60°或120°
    【解析】
    【分析】
    如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.
    【详解】
    解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,

    作OF⊥BC,由垂径定理可知,F为BC的中点,
    ∵BC=,
    ∴CF=BF=BC=× =,
    又因为半径为3,
    ∵OC=3,
    在Rt△FOC中,cos∠OCF= =÷3=,
    ∴∠OCF=30°,
    ∵OC=OB,
    ∴∠OCF=∠OBF=30°,
    ∴∠COB=120°,
    ∴∠D=∠COB=×120°=60°,
    又圆内接四边形的对角互补,
    ∴∠E=120°,
    则弦BC所对的圆周角为60°或120°.
    故答案为:60°或120°.
    【点睛】
    此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.
    5、132°
    【解析】
    【分析】
    连接AO、BO、CO,根据AB是⊙O的内接正六边形的一边,可得 , ,从而得到∠ABO=60°,再由BC是⊙O的内接正十边形的一边,可得 ,BO=CO,从而得到,即可求解.
    【详解】
    解:如图,连接AO、BO、CO,

    ∵AB是⊙O的内接正六边形的一边,
    ∴ , ,
    ∴ ,
    ∵BC是⊙O的内接正十边形的一边,
    ∴ ,BO=CO,
    ∴,
    ∴∠ABC=∠ABO+ ∠CBO=60°+72°=132°.
    故答案为:132°
    【点睛】
    本题主要考查了圆的内接多边形的性质,等腰三角形的性质,熟练掌握圆的内接多边形的性质,等腰三角形的性质是解题的关键.
    三、解答题
    1、 (1)证明见解析
    (2)⊙O半径的长为
    【解析】
    【分析】
    (1)根据角度的数量关系,可得,即,进而可证是的切线;
    (2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.
    (1)
    证明:∵是的直径




    ∴,

    ∴是的切线;
    (2)
    解:∵,



    ∵,

    ∴,


    ∴,
    在中,,即

    ∴半径长为.
    【点睛】
    本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.
    2、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
    3、 (1)
    (2)②,③
    (3)
    (4)
    【解析】
    【分析】
    (1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
    (2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
    (3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
    (4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
    (1)
    解:如图所示:作OD与相切,

    ∴,
    ∵,,
    ∴,
    ∴,
    ∴此时的角度最小,且,
    ∴切点在线段OD上,
    ∴OA的关联角为;
    (2)
    解:如图所示:连接,,,,

    ∵,,
    ∴,
    ∴切点不在线段上,不是的“关联线段”;
    ∵,,
    ∴,,
    ∵,
    ∴是的“关联线段”;
    ∵,
    ∴是的“关联线段”;
    (3)
    解:,,线段BD绕点O的旋转路线的半径为1的上,

    当OD与相切时,
    由(1)可得:,
    ∴当时,线段BD是的“关联线段”,
    故答案为:;
    (4)
    解:如图所示:当m取最大值时,

    M点运动最小半径是O到过点的直线l的距离是m,
    ∵,,
    ∴,
    ∴,
    ∴m的最大值为4,
    如图所示:当m取小值时,

    开始时存在ME与相切,
    ∵,,
    ∴,
    ∵,及点M所在位置,
    ∴,
    综上可得:,
    故答案为:.
    【点睛】
    题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
    4、 (1)BC与⊙O相切,理由见详解
    (2)
    【解析】
    【分析】
    (1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
    (1)
    解: BC与⊙O相切.
    证明:∵AD是∠BAC的平分线,
    ∴∠BAD=∠CAD.
    又∵OD=OA,
    ∴∠OAD=∠ODA.
    ∴∠CAD=∠ODA.
    ∴OD∥AC.
    ∴∠ODB=∠C=90°,即OD⊥BC.
    又∵BC过半径OD的外端点D,
    ∴BC与⊙O相切;
    (2)
    ∵,∠ODB=90°,,
    ∴,
    在Rt△OBD中,
    由勾股定理得:,
    ∴S△OBD= OD•BD= ,S扇形ODF= ,
    ∴阴影部分的面积=.
    【点睛】
    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
    5、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
    (2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
    (1)
    证明:连接OD,

    ∵,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠ODA,
    ∴AE∥OD,
    ∴∠E+∠ODE=90°,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠ODE=180°﹣∠E=90°,
    ∵OD是圆O的半径,
    ∴DE是⊙O的切线;
    (2)
    连接BD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ADE=60°,∠E=90°,
    ∴∠CAD=90°﹣∠ADE=30°,
    ∴∠DAB=∠CAD=30°,
    ∴AB=2BD,
    ∵,

    ∴BD=2,BA=4,
    ∴OD=OB=2,
    ∴△ODB是等边三角形,
    ∴∠DOB=60°,
    ∴△ADB的面积=AD•DB
    =×2×2
    =2,
    ∵OA=OB,
    ∴△DOB的面积=△ADB的面积=,
    ∴阴影部分的面积为:
    △ADB的面积+扇形DOB的面积﹣△DOB的面积
    =2﹣
    =,
    ∴阴影部分的面积为:.
    【点睛】
    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题,共32页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀综合训练题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀综合训练题,共32页。试卷主要包含了已知M,如图,FA等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀达标测试:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀达标测试,共35页。试卷主要包含了如图,PA等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map