所属成套资源:初中数学中考二轮专题复习 中考数学函数专题全突破
初中数学中考二轮专题练习 专题12 二次函数与圆的综合
展开
这是一份初中数学中考二轮专题练习 专题12 二次函数与圆的综合,共9页。试卷主要包含了考点分析,解决此类题目的基本步骤与思路,二次函数中圆的综合问题等内容,欢迎下载使用。
一、考点分析:二次函数与圆的综合题中涉及到的知识面还是很广的,包括待定系数法,勾股定理,相似三角形以及圆的基本的性质特征等等,所以对于学生的知识掌握程度要求很高。这类题目基础问题考察解析式点坐标等问题,压轴问题考察动点相切以及长度面积的变化问题,或者相似三角形构成问题,这类难度比较大。二、解决此类题目的基本步骤与思路1.复习好二次函数与圆的基础题型,把基础内容掌握扎实2.整理二次函数与圆问题的常见题型3. 正确应用二次函数的性质与圆的知识解决问题4. 合理的充分运用三角形的知识与定理5.归纳总结自己的薄弱知识环节并巩固三、二次函数中圆的综合问题(一)例题演示1.已知二次函数y=-x2+bx+c+1. (1)当b=1时,求这个二次函数的对称轴的方程;(2)若c=-b2-2b,问:b为何值时,二次函数的图象与x轴相切;(3)如图,若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好经过点M,二次函数的对称轴l与x轴,直线BM,直线AM分别相交于点D,E,F,且满足=,求二次函数的表达式.【解析】: 本题考察了二次函数的性质、二次函数的图像与x轴的交点、顶点坐标圆周角定理,相似三角形的判定与性质、根与系数的关系等知识,综合性很强。【解答】 (1)二次函数的对称轴为x=-,∵a=-1,b=1,∴x=;(2)与x轴相切就是与x轴只有一个交点,即-x2+bx-b2-2b+1=0有相等的实数根,∴Δ=b2-4×(-1)×=0∴-8b+4=0,解得b=,即b=时,函数图象与x轴相切;设A(m,0)(m<0),则B(-,0),b=,对称轴为x==,∵yAM经过点A(m,0),M(0,1),∴yAM=-x+1,∵yBM经过点B(-,0),M(0,1),∴yBM=mx+1,∵xE=,∴yE=,DE=,∵xF=,∴yF=,∵=,∴ =,∴=,∴m2=(m<0),解得m=-,∴b==,∴y=-x2+x+1.【试题精炼】2.在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A,B,C,D四点,其中A,B两点坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径,E是⊙M与y轴的另一个交点,过劣弧上的点F作FH⊥AD于点H,且FH=1.5.(1)求点D的坐标及抛物线的表达式;(2)若P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使△QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由. 【解答】(1)如答图,连结MB,设⊙M的半径为r.∵A(-1,0),B(0,-2),∴在Rt△OMB中,OB=2,OM=r-1,由勾股定理,得22+(r-1)2=r2.∴r=.∴AD=5.∴点D的坐标是(4,0).∵抛物线y=ax2+bx+c过点A(-1,0),B(0,-2),D(4,0),解得∴抛物线的表达式为y=x2-x-2;.【中考链接】3.如图对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0).(1)求抛物线的表达式;(2)直接写出B,C两点的坐标;(3)求过O,B,C三点的圆的面积(结果用含π的代数式表示).【解析】:(1)根据对称轴和A点坐标可以求出抛物线的表达式。(2)根据抛物线解析式容易求出BC两点的坐标(3)抓住△OBC是直角三角形,所以半径就等于斜边的一半,从而快速的求出圆面积(3)如答图,连结BC,则△OBC是直角三角形,∴过O,B,C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴S=π=π. 4.已知抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0),B两点,与y轴交于点C.抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的表达式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△PAC=S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B,C,M为顶点的三角形与△ACD相似,直接写出点M的坐标.【解答】(1)把A(3,0)代入y=ax2+bx+3,得0=9a+3b+3.①∵抛物线的对称轴为x=1.∴-=1.②解①②组成的方程组,得a=-1,b=2.∴抛物线的表达式为y=-x2+2x+3.∵y=-x2+2x+3=-(x-1)2+4,∴D的坐标是(1,4).(2)证明:在y=-x2+2x+3中,当x=0时,y=3.∴C(0,3),OC=3.∵A(3,0),∴OA=3.在△OAC中,由勾股定理得AC2=18.如答图①,过点E作EH⊥CD,垂足为点H.则EH=CH===.∵CD2=2,AC2=18,∴CD=,AC=3.∴DH=-=.在△DEH中,tan∠EDH===.在△ACD中,tan∠DAC===.∴∠EDH=∠DAC.∵∠ACD=90°,∴∠DAC+∠ADC=90°.∴∠EDH+∠ADC=90°,即∠ADE=90°. ∴AD⊥DE.∴DE是△ACD外接圆的切线. (3)∵CD=,AC=3.∴S△ACD=AC·CD=3.设直线AC的函数表达式为y=mx+n.把A(3,0),C(0,3)代入,得 解得m=-1,n=3.∴直线AC的函数表达式为y=-x+3.设P(t,-t2+2t+3),如答图②,(4),(9,0),(0,0).提示:∵△ACD是直角三角形,△ACD与△BCM相似,∴△BCM是直角三角形.∵抛物线的对称轴是直线x=1,A(3,0),∴B(-1,0),OB=1.连结BC.∵=,=,又∵∠ACD=∠BOC,∴△ACD∽△COB.∴△BCM与△COB相似. 当点B为直角顶点时,如答图③,当点C为直角顶点时,如答图④,过点C作CM2⊥BC交x轴于点M2.同理可求OM2=9.∴M2(9,0).当点M为直角顶点时,如答图⑤,
相关试卷
这是一份初中数学中考二轮专题练习 专题07 二次函数问题,文件包含专题07二次函数问题教师版doc、专题07二次函数问题doc等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。
这是一份初中数学中考二轮专题练习 专题11 二次函数与相似三角形的综合,共10页。试卷主要包含了考点分析,解决此类题目的基本步骤与思路,注意事项,二次函数中相似三角形问题等内容,欢迎下载使用。
这是一份初中数学中考二轮专题练习 专题10 二次函数与四边形的综合,共12页。试卷主要包含了考点分析,解决此类题目的基本步骤与思路,针对于计算的方法选择等内容,欢迎下载使用。