初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品巩固练习
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品巩固练习,共21页。试卷主要包含了下列各角中,为锐角的是,在数轴上,点M等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )A.两点确定一条直线 B.经过一点有无数条直线C.两点之间,线段最短 D.一条线段等于已知线段2、下列命题中,正确的有( )①两点之间线段最短; ②角的大小与角的两边的长短无关;③射线是直线的一部分,所以射线比直线短.A.0个 B.1个 C.2个 D.3个3、如图所示,B、C是线段AB上任意两点,M是AB的中点,N是CD的中点,若,,则线段AD的长是( )A.15 B.17 C.19 D.204、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )A.3cm B.4cm C.5cm D.6cm5、下列各角中,为锐角的是( )A.平角 B.周角 C.直角 D.周角6、已知∠α=125°19′,则∠α的补角等于( )A.144°41′ B.144°81′ C.54°41′ D.54°81′7、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )A.①②③ B.①②④ C.①③④ D.②③④8、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )A.340° B.350° C.360° D.370°9、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.510、如图,下列说法不正确的是( )A.直线m与直线n相交于点D B.点A在直线n上C.DA+DB<CA+CB D.直线m上共有两点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直线上有A、B、C三点,AB=4,BC=6,则AC=___.2、45°30'=_____°.3、一个圆的周长是31.4cm,它的半径是_____cm,面积是_____cm2.4、一个锐角的补角比它的余角的3倍少10°,则这个锐角度数为______°.5、冬至是地球赤道以北地区白昼最短、黑夜最长的一天,在苏州有“冬至大如年”的说法.苏州冬至日正午太阳高度角是,的余角为__________.三、解答题(5小题,每小题10分,共计50分)1、解答下列各题:(1)化简并求值:(a﹣ab)+(b+2ab)﹣(a+b),其中a=7,b=﹣.(2)如图,OD为∠AOB的平分线,∠AOC=2∠BOC,AO⊥CO,求∠COD的度数.2、如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE;(4)通过测量猜测线段BE和AB之间的数量关系.3、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为的“三倍距点”,当CB=3CA时,我们称C为的“三倍距点”, 点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b﹣5|=0.(1)a= ,b= ;(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C表示的数为 ;(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当为M,N两点的“三倍距点”时,求t的值.4、点是直线上的一点,,平分.(1)如图,若,求的度数.(2)如图,若,求的度数.5、如图,平分,平分.若,.(1)求出的度数;(2)求出的度数,并判断与的数量关系是互补还是互余. -参考答案-一、单选题1、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.2、C【解析】【分析】利用线段的性质、角的定义等知识分别判断后即可确定正确的选项.【详解】解:①两点之间线段最短,正确,符合题意;②角的大小与角的两边的长短无关,正确,符合题意;③射线是直线的一部分,射线和直线都无法测量长度,故错误,不符合题意,正确的有2个,故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解线段的性质、角的定义等知识,难度不大.3、D【解析】【分析】由M是AB的中点,N是CD的中点,可得先求解 从而可得答案.【详解】解: M是AB的中点,N是CD的中点, 故选D【点睛】本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.4、B【解析】【分析】根据中点的定义求出AE和AD,相减即可得到DE.【详解】解:∵D是线段AB的中点,AB=6cm,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.5、B【解析】【分析】求出各个选项的角的度数,再判断即可.【详解】解:A. 平角=90°,不符合题意;B. 周角=72°,符合题意;C. 直角=135°,不符合题意;D. 周角=180°,不符合题意;故选:B.【点睛】本题考查了角的度量,解题关键是明确周角、平角、直角的度数.6、C【解析】【分析】两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.【详解】解: ∠α=125°19′, ∠α的补角等于 故选C【点睛】本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.7、B【解析】【分析】先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.【详解】解:根据题意,画出图形,如图所示:设 ,则 ,∵点D是线段AC的中点,∴ ,∴ ,∴AB=BD,即点B是线段AD的中点,故①正确;∴BD=CD,故②正确;∴AB=CD,故③错误;∴ ,∴BC﹣AD=AB,故④正确;∴正确的有①②④.故选:B【点睛】本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.8、B【解析】【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD,然后根据,的度数是一个正整数,可以解答本题.【详解】解:由题意可得,图中所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC∵,的度数是一个正整数,∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;C、当3∠AOD+∠BOC=360°时,则=,不符合题意;D、当3∠AOD+∠BOC=370°时,则=,不符合题意.故选:B.【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.9、C【解析】【分析】根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可【详解】解:①如图,当在点的右侧时,,②如图,当在点的左侧时, ,综上所述,线段的长度为6.5或1.5故选C【点睛】本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.10、D【解析】【分析】根据直线相交、点与直线、两点之间线段最短逐项判断即可得.【详解】解:A、直线与直线相交于点,则此项说法正确,不符合题意;B、点在直线上,则此项说法正确,不符合题意;C、由两点之间线段最短得:,则此项说法正确,不符合题意;D、直线上有无数个点,则此项说法不正确,符合题意;故选:D.【点睛】本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.二、填空题1、10或2##2或10【解析】【分析】根据题目可分两种情况,C点在B点右测时,C在B左侧时,根据两种情况画图解析即可.【详解】解:①如图一所示,当C点在B点右测时:AC=AB+BC=4+6=10;②如图二所示:当C在B左侧时:AC=BC-AB=6-4=2,综上所述AC等于10或2,故答案为:10或2.【点睛】本题考查,线段的长度,点与点之间的距离,以及分类讨论思想,在解题中能够将分类讨论思想与几何图形相结合是本题的关键.2、45.5【解析】【分析】先将化为度数,然后与整数部分的度数相加即可得.【详解】解:.故答案为:.【点睛】题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.3、 5 78.5【解析】【分析】设圆的半径为.先利用圆的周长公式求出,再利用圆的面积公式即可得.【详解】解:设圆的半径为,由题意得:,解得,则圆的面积为,故答案为:5,78.5.【点睛】本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.4、40【解析】【分析】设这个锐角为x度,进而得到补角为(180-x)度,余角为(90-x)度,再根据题中等量关系即可求解.【详解】解:设锐角为x度,则它的补角为(180-x)度,余角为(90-x)度,由题意可知:180-x=3(90-x)-10,解出:x=40,故答案为:40.【点睛】本题考查了补角及余角的定义,一元一次方程的解法,熟练掌握补角及余角的定义是解决本题的关键.5、【解析】【分析】两个角的和为直角,则称这两个角互为余角,简称互余,根据余角的概念即可求得结果.【详解】故答案为:【点睛】本题主要考查了余角的计算,掌握余角的概念是关键.三、解答题1、 (1)ab,-1(2)22.5°【解析】【分析】(1)首先化简(a-ab)+(b+2ab)-(a+b),然后把a=7,b=代入化简后的算式即可.(2)根据垂直的定义得到∠AOC=90°,求得∠AOB=∠AOC+∠BOC=135°,根据角平分线的定义求出∠BOD,再减去∠BOC可得结果.【小题1】解:(a-ab)+(b+2ab)-(a+b)=a-ab+b+2ab-a-b=ab当a=7,b=时,原式=7×()=-1.【小题2】∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°,∴∠COD=∠BOD-∠BOC=22.5°.【点睛】此题主要考查了整式的加减-化简求值问题,角度的计算,角平分线的定义,要熟练掌握,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.2、 (1)见解析(2)见解析(3)见解析(4),猜测【解析】【分析】(1)根据题意画射线AC,线段BC;(2)根据题意,连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD;(3)根据题意,利用刻度尺取线段CD的中点E,连接BE;(4)测量线段BE和AB的长度,进而求得猜测BE和AB之间的数量关系.(1)如图所示,射线AC,线段BC即为所求;(2)如图所示,连接AB,在线段AB的延长线上截取BD=BC,连接CD;(3)如图所示,取线段CD的中点E,连接BE;(4)通过测量,猜测【点睛】本题考查了直线、射线、线段以及线段的中点,正确区分直线、线段、射线是解题关键.3、 (1)(2)3(3) 或或【解析】【分析】(1)利用非负数的性质可得: 再解方程可得答案;(2)由新定义可得 从而可得答案;(3)当运动时间为秒时,对应的数为 对应的数为 根据新定义分两种情况讨论:当时,则 当时,则 再解方程可得答案.(1)解: 解得: 故答案为:(2)解: 点C在线段AB上,且为[A,B]的“三倍距点”, 点对应的数为: 故答案为:3(3)解:当运动时间为秒时,对应的数为 对应的数为 当时,则 或 解得:,而无解,当时,则 即 或 解得:或【点睛】本题考查的是数轴上的动点问题,平方与绝对值非负性的应用,绝对值方程的应用,一元一次方程的应用,线段的和差倍分关系,熟练的利用方程解决动点问题是解本题的关键.4、(1)=25°;(2)【解析】【分析】(1)结合题意,根据平角的性质,得,根据角平分线的性质,得;根据余角的性质计算,即可得到答案;(2)设,根据角平分线性质,得,结合,通过列一元一次方程并求解,得;再通过角度和差计算,即可得到答案.【详解】(1)∵是一个平角∴∴∵∴∴;(2)设,则∵平分∴∵∴∴∴∴∴.【点睛】本题考查了角、角平分线、一元一次方程的知识;解题的关键是熟练掌握角平分线、余角、角度和差运算、一元一次方程的性质.5、 (1)(2),互补【解析】【分析】(1)先根据角平分线的定义求出∠BOC的度数,然后可求的度数;(2)先根据角平分线的定义求出∠COD、∠COE的度数,然后可求的度数,进而可判断与的数量关系.(1)解:∵平分,,∴,又∵,∴;(2)解:∵平分,平分,,∴,,∴,∴,∴与的数量关系是互补.【点睛】本题主要考查角平分线的定义和补角的定义,关键是根据补角的定义解答.如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共22页。试卷主要包含了已知,则∠A的补角等于,下列说法,如图,D,能解释等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习,共23页。试卷主要包含了已知线段AB,若的补角是,则的余角是,下列四个说法等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品同步达标检测题,共21页。试卷主要包含了下列命题中,正确的有,用度,在9,如图,点在直线上,平分,,,则等内容,欢迎下载使用。