![难点解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12733893/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12733893/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12733893/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题
展开
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题,共25页。试卷主要包含了已知,则的补角等于,下列说法正确的是,下列说法中正确的是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是( )A.∠α=∠β B.∠α=∠β C.∠α+∠β=90° D.∠α+∠β=180°2、钟表10点30分时,时针与分针所成的角是( )A. B. C. D.3、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )A. B.C.或 D.或4、已知,则的补角等于( )A. B. C. D.5、下列说法正确的是( )A.正数与负数互为相反数 B.如果x2=y2,那么x=yC.过两点有且只有一条直线 D.射线比直线小一半6、下列图形中,能用,,三种方法表示同一个角的是( )A. B.C. D.7、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是( )A.过一点有无数条直线 B.两点确定一条直线C.两点之间线段最短 D.线段是直线的一部分8、下列说法中正确的是( )A.两点之间直线最短 B.单项式πx2y的系数是C.倒数等于本身的数为±1 D.射线是直线的一半9、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个10、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在同一平面内.O为直线AB上一点.射线OE将平角∠AOB分成∠AOE、∠BOE两部分.已知∠BOE=α.OC为∠AOE的平分线.∠DOE=90°.则∠COD=______(用含有α的代数式表示)2、西北方向:_________;西南方向:__________;东南方向:__________;东北方向:__________3、已知,则它的余角是______.4、如图,在的内部有3条射线、、,若,,,则__________.5、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,直线AB、CD相交于点O,∠EOC=90°,OF平分∠AOE.(1)若∠BOC=40°,求∠AOF的大小.(2)若∠COF=x°,求∠BOC的大小.2、如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE;(4)通过测量猜测线段BE和AB之间的数量关系.3、一副三角板按如图1所示放置,边在直线上,.(1)求图1中的度数;(2)如图2,将三角板绕点O顺时针旋转,转速为,同时将三角板绕点O逆时针旋转,转速为,当旋转到射线上时,两三角板都停止转动.设转动时间为.①在范围内,当时,求t的值;②如图3,旋转过程中,作的角平分线,当时.直接写出时间的值.4、(1)如图l,点D是线段AC的中点,且 AB=BC,BC=6,求线段BD的长;(2)如图2,已知OB平分∠AOD,∠BOC=∠AOC,若∠AOD=100°,求∠BOC的度数.5、补全解题过程.如图所示,点C是线段AB的中点,延长线段AB至点D,使BD=AB,若BC=3,求线段CD的长.解:∵点C是线段AB的中点,且BC=3(已知),∴AB=2× (①填线段名称)= (②填数值)∵BD=AB(已知),∴BD= (③填数值),∴.CD= (④填线段名称)+BD= (⑤填数值). -参考答案-一、单选题1、C【解析】【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C.【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.2、B【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:10点30分时的时针和分针相距的份数是4.5,10点30分时的时针和分针所成的角的度数为30°×4.5=135°,故选:B.【点睛】本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.3、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.4、C【解析】【分析】补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.【详解】解:∵,∴的补角等于,故选:C.【点睛】本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.5、C【解析】【分析】A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.【详解】解:A中正数负数分别为,,错误,不符合要求;B中,可得或,错误,不符合要求;C中过两点有且只有一条直线 ,正确,符合要求;D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;故选C.【点睛】本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.6、A【解析】【分析】根据角的表示的性质,对各个选项逐个分析,即可得到答案.【详解】A选项中,可用,,三种方法表示同一个角;B选项中,能用表示,不能用表示;C选项中,点A、O、B在一条直线上,∴能用表示,不能用表示;D选项中,能用表示,不能用表示;故选:A.【点睛】本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.7、B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.∴能解释这一实际应用的数学知识是两点确定一条直线.故选:B.【点睛】本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.8、C【解析】【分析】分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.【详解】解:A.两点之间线段最短,故不符合题意;B.单项式πx2y的系数是,不符合题意;C.倒数等于本身的数为±1,故符合题意;D.射线是是直线的一部分,故不符合题意;故选:C.【点睛】本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.9、A【解析】【分析】根据直线、线段、射线的区别逐项分析判断即可【详解】解:①图中只有直线BD,1条直线,原说法错误;②图中共有2×3+1×2=8条射线,原说法错误;③图中共有6条线段,即线段,原说法是正确的;④图中射线BC与射线CD不是同一条射线,原说法错误.故正确的有③,共计1个故选:A.【点睛】本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.10、C【解析】【分析】根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.【详解】解:,点A到原点的距离最大,点其次,点最小,又,原点的位置是在点、之间且靠近点的地方,,故选:.【点睛】此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.二、填空题1、或【解析】【分析】分两种情况:射线OD、OE在直线AB的同侧;射线OD、OE在直线AB的异侧;利用角平分线的定义、互补、角的和差关系即可求得结果.【详解】①当射线OD、OE在直线AB的同侧时,如图所示∵OC为∠AOE的平分线∴∠1=∠2∵∠AOE+∠BOE=180°,∠BOE=α∴∠AOE=180°−α∴∴②当射线OD、OE在直线AB的异侧时,如图所示∵OC为∠AOE的平分线∴∠1=∠2∵∠AOE+∠BOE=180°,∠BOE=α∴∠AOE=180°−α∴∴综上所述,∠COD=或.故答案为:或【点睛】本题考查了角平分线的定义,互补的定义,角的和差关系等知识,要根据题意画出图形,并注意分类讨论.2、 射线OE 射线OF 射线OG 射线OH【解析】略3、【解析】【分析】根据余角的定义求即可.【详解】解:∵,∴它的余角是90°-=,故答案为:.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.4、13【解析】【分析】先用含∠BOE的代数式表示出∠AOB,进而表示出∠BOD,然后根据∠DOE=∠BOD-∠BOE即可得到结论.【详解】解:∵∠BOE=∠BOC,∴∠BOC=4∠BOE,∴∠AOB=∠AOC+∠BOC=52°+4∠BOE,∴∠BOD=∠AOB=+∠BOE,∴∠DOE=∠BOD-∠BOE=,故答案为:13.【点睛】本题考查了角的和差倍分计算,正确的识别图形是解题的关键.5、八【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.【详解】解:由题意得,n-2=6,解得:n=8,故答案为:八.【点睛】本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.三、解答题1、(1);(2)【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC=90°,∠BOC=40°∴ ∵OF平分∠AOE∴ ;(2)∵∠COF=x°,∠EOC=90°∴ ∵OF平分∠AOE∴ ∴.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.2、 (1)见解析(2)见解析(3)见解析(4),猜测【解析】【分析】(1)根据题意画射线AC,线段BC;(2)根据题意,连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD;(3)根据题意,利用刻度尺取线段CD的中点E,连接BE;(4)测量线段BE和AB的长度,进而求得猜测BE和AB之间的数量关系.(1)如图所示,射线AC,线段BC即为所求;(2)如图所示,连接AB,在线段AB的延长线上截取BD=BC,连接CD;(3)如图所示,取线段CD的中点E,连接BE;(4)通过测量,猜测【点睛】本题考查了直线、射线、线段以及线段的中点,正确区分直线、线段、射线是解题关键.3、 (1)(2)①2s;②s或s或s.【解析】【分析】(1)利用角的和差关系可得从而可得答案;(2)①先求解重合的时间,再画出图形,结合几何图形与角的和差关系列方程,再解方程即可;②分情况讨论:当时,结合①可得 当时, 当时,利用角的和差关系列方程 解方程即可,当时,如图,当 利用角的和差关系列方程 再解方程即可,当时, 当时,利用角的和差关系列方程,再解方程即可,从而可得答案.(1)解: , (2)解:① 则重合时的时间为:(s),当时, 解得: 所以当旋转2s时, ②当旋转到射线上时,(s),当时,结合①可得 当重合时,(s),重合时,(s),如图,所以当时, 当重合时,(s),如图,当时, 平分 解得: 当重合时,(s),当时,如图, 平分 解得: 不符合题意,舍去,当重合时,(s),当 平分 解得: 如图,当再次重合时,(s),当时, 如图,当重合时,(s)当时, 平分 解得: 综上:当时,s或s或s.【点睛】本题考查的是几何图形中角的和差关系,角的动态定义的理解,一元一次方程的应用,“数形结合与利用一元一次方程解决动态几何问题”是解本题的关键.4、(1)BD=1;(2)∠COB=20°【解析】【分析】(1)根据AB=BC,BC=6求出AB的值,再根据线段的中点求出AD的值,然后可求BD的长;(2)先根据角平分线的定义求出∠AOB,再根据∠BOC=∠AOC,求解即可.【详解】解:(1)∵AB=BC,BC=6,∴AB=×6=4,∴AC=AB+BC=10,∵点D是线段AC的中点,∴AD=AC=5,∴BD=AD-AB=5-4=1;(2)∵OB平分∠AOD,∠AOD=100°,∴∠AOB=∠AOD=50°,∵∠BOC+∠AOC=∠AOB,∠BOC=∠AOC,∴∠AOC+∠AOC=50°,∴∠AOC=30°,∴∠BOC=∠AOC=20°.【点睛】本题考查了线段的中点,线段的和差,角的平分线,角的和差,数形结合是解答本题的关键.5、;;;;【解析】【分析】根据线段的中点的性质以及线段的和差关系填写过程即可【详解】解:∵点C是线段AB的中点,且BC=3(已知),∴AB=2×(①填线段名称)=(②填数值)∵BD=AB(已知),∴BD=(③填数值),∴.CD=(④填线段名称)+BD=(⑤填数值).【点睛】本题考查了有关线段中点的计算,线段和差的计算,数形结合是解题的关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练,共24页。试卷主要包含了下列命题中,正确的有,下列现象,已知线段AB,如果A等内容,欢迎下载使用。
这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试习题,共23页。试卷主要包含了已知线段AB,已知,则的补角等于,如图所示,点E等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课时训练,共23页。试卷主要包含了在下列生活,如图,射线OA所表示的方向是,图中共有线段等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)