![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形难点解析练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12733929/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形难点解析练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12733929/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形难点解析练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12733929/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品精练
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品精练,共21页。试卷主要包含了在下列生活,下列现象,在一幅七巧板中,有我们学过的,如果A,若的补角是,则的余角是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )A.点B在线段CD上(C、D之间) B.点B与点D重合C.点B在线段CD的延长线上 D.点B在线段DC的延长线上2、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )A.4 B.5 C.10 D.143、已知与互为余角,若,则的补角的大小为( )A. B. C. D.4、在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( )①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①② B.①④ C.②③ D.③④5、如图所示,若,则射线OB表示的方向为( ).A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°6、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有( )A.①④ B.①③ C.②④ D.③④7、在一幅七巧板中,有我们学过的( )A.8个锐角,6个直角,2个钝角 B.12个锐角,9个直角,2个钝角C.8个锐角,10个直角,2个钝角 D.6个锐角,8个直角,2个钝角8、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )A.10cm B.2cm C.10或2cm D.无法确定9、若的补角是,则的余角是( )A. B. C. D.10、如图,C为线段上一点,点D为的中点,且,.则的长为( ).A.18 B.18.5 C.20 D.20.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB和CD相交于点O,∠AOD=3∠AOC,则直线AB和CD的夹角是______.2、如图,已知数轴上点A、B、C所表示的数分别为a、b、c,C为线段AB的中点,且,如果原点在线段AC上,那么______.3、如果一个角的补角是,那么这个角的度数是________.4、如果∠A=55°30′,那么∠A的余角的度数等于______°.5、如图,点C是线段上任意一点(不与端点重合),点M是中点,点P是中点,点Q是中点,则下列说法:①;②;③;④.其中正确的是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.(1)连接AB;作直线AD.(2)作射线BC与直线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是: .2、如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.(1)连接AB;(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;(3)作直线BC与射线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是: .3、已知:如图,直线AB、CD相交于点O,∠EOC=90°,OF平分∠AOE.(1)若∠BOC=40°,求∠AOF的大小.(2)若∠COF=x°,求∠BOC的大小.4、按要求作答:如图,已知四点A、B、C、D,请仅用直尺和圆规作图,保留画图痕迹.(1)①画直线AB; ②画射线BC;③连接AD并延长到点E,在射线AE上截取AF,使AF=AB+BC;(2)在直线BD上确定一点P,使PA+PC的值最小,并写出画图的依据 .5、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为的“三倍距点”,当CB=3CA时,我们称C为的“三倍距点”, 点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b﹣5|=0.(1)a= ,b= ;(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C表示的数为 ;(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当为M,N两点的“三倍距点”时,求t的值. -参考答案-一、单选题1、C【解析】【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD的延长线上,故选:C.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.2、C【解析】【分析】设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.【详解】∵AC:CD:DB=2:3:4,∴设AC=2x,CD=3x,DB=4x,∴AB=9x,∵AB=18,∴x=2,∴AD=2x+3x=5x=10,故选:C.【点睛】本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.3、B【解析】【分析】根据求得,根据求得的补角【详解】解:∵与互为余角,若,∴故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为,互为补角的两角之和为.4、B【解析】【分析】直接利用直线的性质以及线段的性质分析求解即可.【详解】①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;综上可得:①④可以用“两点确定一条直线”来解释,故选:B.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.5、A【解析】【分析】根据同角的余角相等即可得,,根据方位角的表示方法即可求解.【详解】如图,即射线OB表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.6、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.7、B【解析】【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.8、C【解析】【分析】分AC=AB+BC和AC=AB-BC,两种情况求解.【详解】∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,当AC=AB+BC时,AC=6+4=10;当AC=AB-BC时,AC=6-4=2;∴AC的长为10或2cm故选C.【点睛】本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.9、B【解析】【分析】直接利用一个角的余角和补角差值为90°,进而得出答案.【详解】解:∵∠α的补角等于130°,∴∠α的余角等于:130°-90°=40°.故选:B.【点睛】本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.10、C【解析】【分析】根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.【详解】解:由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=30,解得CD=5,AC=4CD=4×5=20cm,故选:C;【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.二、填空题1、45°##45度【解析】【分析】∠AOD=3∠AOC,∠AOD+∠AOC=180°,计算求解∠AOC的值即为所求.【详解】解:由题意知,直线AB和CD的夹角是∠AOC或∠BOD∵∠AOD=3∠AOC,∠AOD+∠AOC=180°∴∠AOC=45°故答案为:45°.【点睛】本题考查了补角.解题的关键在于正确的找出角度之间的数量关系.2、2【解析】【分析】根据中点的定义可知,再由原点在线段AC上,可判断,再化简绝对值即可.【详解】解:∵C为线段AB的中点,且,∴,即,∵原点在线段AC上,∴,;故答案为:2.【点睛】本题考查了线段的中点和化简绝对值,解题关键是根据中点的定义和数轴确定.3、60°##60度【解析】【分析】根据和为180度的两个角互为补角求解即可.【详解】解:根据定义一个角的补角是120°,则这个角是180°-120°=60°,故答案为:60°.【点睛】本题考查了补角的定义,掌握补角的定义是解题的关键.4、34.5【解析】【分析】根据余角定义解答.【详解】解:∵∠A=55°30′,∴∠A的余角的度数为=34.5°,故答案为:34.5.【点睛】此题考查了余角的定义:相加为90°的两个角互为余角,熟记余角定义是解题的关键.5、①②④【解析】【分析】根据线段中点的定义得到,,,然后根据线段之间的和差倍分关系逐个求解即可.【详解】解:∵M是中点,∴,∵P是中点,∴,∵点Q是中点,∴,对于①:,故①正确;对于②:,,故②正确;对于③:,而,故③错误;对于④:,,故④正确;故答案为:①②④.【点睛】此题考查线段之间的和差倍分问题,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.三、解答题1、 (1)见解析;(2)见解析,两点之间线段最短【解析】【分析】(1)根据线段、直线的定义即可画出图形;(2)根据射线的定义,可画出射线BC,再根据两点之间线段最短解决问题.(1)如图所示,线段AB与直线AD即为所求;(2)如上图所示,射线BC即为所求,根据两点之间线段最短得AF+BF>AB,故答案为:两点之间线段最短.【点睛】本题考查了画线段、直线、射线;两点之间线段最短,掌握线段、射线、直线的特点是解题的关键.2、 (1)见解析(2)见解析(3)见解析,两点之间,线段最短【解析】【分析】(1)根据题意作线段即可;(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;(3)作直线BC与射线AD交于点F,进而根据两点之间,线段最短即可求解(1)如图所示,作线段,AB即为所求;(2)如图所示,作射线AD,并在线段AD的延长线上用圆规截取DE=AB,射线AD,线段即为所求;(3)如图所示,作直线BC与射线AD交于点F,直线BC即为所求;线段AF+BF>AB,得出这个结论的依据是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】本题考查了画射线、线段、直线,两点之间线段最短,掌握线段的性质是解题的关键.3、(1);(2)【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC=90°,∠BOC=40°∴ ∵OF平分∠AOE∴ ;(2)∵∠COF=x°,∠EOC=90°∴ ∵OF平分∠AOE∴ ∴.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.4、 (1)①见解析,②见解析,③见解析(2)图见解析,两点之间,线段最短【解析】【分析】(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.(1)①如图所示:连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,故答案为:两点之间,线段最短.【点睛】题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.5、 (1)(2)3(3) 或或【解析】【分析】(1)利用非负数的性质可得: 再解方程可得答案;(2)由新定义可得 从而可得答案;(3)当运动时间为秒时,对应的数为 对应的数为 根据新定义分两种情况讨论:当时,则 当时,则 再解方程可得答案.(1)解: 解得: 故答案为:(2)解: 点C在线段AB上,且为[A,B]的“三倍距点”, 点对应的数为: 故答案为:3(3)解:当运动时间为秒时,对应的数为 对应的数为 当时,则 或 解得:,而无解,当时,则 即 或 解得:或【点睛】本题考查的是数轴上的动点问题,平方与绝对值非负性的应用,绝对值方程的应用,一元一次方程的应用,线段的和差倍分关系,熟练的利用方程解决动点问题是解本题的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试巩固练习,共26页。试卷主要包含了已知,则∠A的补角等于,在一幅七巧板中,有我们学过的,图中共有线段等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共22页。试卷主要包含了上午10等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练,共22页。试卷主要包含了能解释,已知与满足,下列式子表示的角,如图,D,下列说法正确的是等内容,欢迎下载使用。