数学六年级下册第五章 基本平面图形综合与测试精品当堂达标检测题
展开
这是一份数学六年级下册第五章 基本平面图形综合与测试精品当堂达标检测题,共24页。试卷主要包含了如图,D,能解释,已知,则的补角等于等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )A.4cm B.36cm C.4cm或36cm D.4cm或2cm2、下列说法中正确的是( )A.两点之间所有的连线中,直线最短 B.射线AB和射线BA是同一条射线C.一个角的余角一定比这个角大 D.一个锐角的补角比这个角的余角大90°3、下列说法:(1)在所有连结两点的线中,线段最短;(2)连接两点的线段叫做这两点的距离;(3)若线段 ,则点是线段的中点;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,其中说法正确的是 ( )A.(1)(2)(3) B.(1)(4) C.(2)(3) D.(1)(2)(4)4、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是( )A.过一点有无数条直线 B.两点确定一条直线C.两点之间线段最短 D.线段是直线的一部分5、若点在点的北偏西,点在点的西南方向,则的度数是( )A. B. C. D.6、如图,D、E顺次为线段上的两点,,C为AD的中点,则下列选项正确的是( )A.若,则 B.若,则C.若,则 D.若,则7、能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( )A.垂线段最短 B.两点确定一条直线C.两点之间线段最短 D.同角的补角相等8、钟表10点30分时,时针与分针所成的角是( )A. B. C. D.9、已知,则的补角等于( )A. B. C. D.10、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )A.2 B.2.5 C.3 D.3.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在一条笔直的马路(直线l)两侧各有一个居民区(点M,N),如果要在这条马路旁建一个购物中心,使购物中心到这两个小区的距离之和最小,那么购物中心应建在线段MN与直线l的交点P处,这样做的依据是_______.2、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.3、已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,则∠α=_____,∠β=_____.4、冬至是地球赤道以北地区白昼最短、黑夜最长的一天,在苏州有“冬至大如年”的说法.苏州冬至日正午太阳高度角是,的余角为__________.5、如图,延长线段AB到C,使BC=AB,D为线段AC的中点,若DC=3,则AB=______.三、解答题(5小题,每小题10分,共计50分)1、如图,在同一直线上,有A、B、C、D四点.已知DB=AD,AC=CD,CD=4cm,求线段AB的长.2、如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.(1)连接AB;(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;(3)作直线BC与射线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是: .3、如图,平分,平分.若,.(1)求出的度数;(2)求出的度数,并判断与的数量关系是互补还是互余.4、如图,已知平面上三个点A,B,C,按要求完成下列作图(不写作法,只保留作图痕迹):(1)作直线AC,射线BA;(2)连接BC.并延长BC至点D,使CD=BC.5、一副三角板按如图1所示放置,边在直线上,.(1)求图1中的度数;(2)如图2,将三角板绕点O顺时针旋转,转速为,同时将三角板绕点O逆时针旋转,转速为,当旋转到射线上时,两三角板都停止转动.设转动时间为.①在范围内,当时,求t的值;②如图3,旋转过程中,作的角平分线,当时.直接写出时间的值. -参考答案-一、单选题1、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵,∴AB=BD,∵点C为线段AB的中点,∴BC=,∵,∴,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵,∴AD=,∵点C为线段AB的中点,∴AC=BC=,∵,∴-=6,∴AB=36cm,故选C.【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.2、D【解析】【分析】分别根据线段的性质、射线、余角、补角等定义一一判断即可.【详解】解:A.两点之间所有的连线中,线段最短,故此选项错误;B.射线AB和射线BA不是同一条射线,故此选项错误;C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;故选:D【点睛】本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.3、B【解析】【分析】根据两点之间线段最短,数轴上两点间的距离的定义求解,线段的中点的定义,直线的性质对各小题分析判断即可得解.【详解】解:(1)在所有连结两点的线中,线段最短,故此说法正确;(2)连接两点的线段的长度叫做这两点的距离,故此说法错误;(3)若线段AC=BC,则点C不一定是线段AB的中点,故此说法错误;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,故此说法正确;综上所述,说法正确有(1)(4).故选:B.【点睛】本题考查了线段的性质、两点间的距离的定义,线段的中点的定义,直线的性质等,是基础题,熟记各性质与概念是解题的关键.4、B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.∴能解释这一实际应用的数学知识是两点确定一条直线.故选:B.【点睛】本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.5、C【解析】【分析】先画出符合题意的图形,如图,由题意得:再求解 再利用角的和差关系可得答案.【详解】解:如图,由题意得: 故选C【点睛】本题考查的是方向角的含义,角的和差关系,掌握“方向角的定义”是解本题的关键.6、D【解析】【分析】先利用中点的含义及线段的和差关系证明再逐一分析即可得到答案.【详解】解: C为AD的中点, ,则 故A不符合题意; ,则 同理: 故B不符合题意; ,则 同理: 故C不符合题意; ,则 同理: 故D符合题意;故选D【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明”是解本题的关键7、B【解析】【分析】根据两点确定一条直线解答即可.【详解】解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,故选B.【点睛】本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键.8、B【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:10点30分时的时针和分针相距的份数是4.5,10点30分时的时针和分针所成的角的度数为30°×4.5=135°,故选:B.【点睛】本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.9、C【解析】【分析】补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.【详解】解:∵,∴的补角等于,故选:C.【点睛】本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.10、C【解析】【分析】由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.【详解】解:∵,,∴BC=12,∴AC=AB+BC=18,∵D是AC的中点,∴,∴BD=AD-AB=9-6=3,故选:C.【点睛】此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.二、填空题1、两点之间,线段最短【解析】【分析】根据两点之间线段最短即可求出答案.【详解】解:依据是两点之间,线段最短,故答案为:两点之间,线段最短.【点睛】本题考查作图问题,解题的关键是正确理解两点之间线段最短,本题属于基础题型.2、【解析】【分析】根据90°-∠α即可求得的值.【详解】解:∵∠α与∠β互余,且∠α=35°30′,∴∠β故答案为:【点睛】本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.3、 80°##80度 100°##100度【解析】【分析】根据互为补角的和等于180°,得到α=180°-β,然后根据题意列出关于β的一元一次方程,求解即可.【详解】解:∵∠α和∠β互为补角,∴α=180°-β,根据题意得,180°-β-β=30°,解得β=100°,α=180°-β=80°,故答案为:80°,100°.【点睛】本题考查了互为补角的和等于180°的性质,根据题意列出一元一次方程是解题的关键.4、【解析】【分析】两个角的和为直角,则称这两个角互为余角,简称互余,根据余角的概念即可求得结果.【详解】故答案为:【点睛】本题主要考查了余角的计算,掌握余角的概念是关键.5、4【解析】【分析】根据线段中点的性质,可得AC的长,再根据题目已知条件找到BC和AC之间的关系,用AC减去BC就得AB的长度【详解】解:由D为AC的中点,得AC=2DC=2×3=6又∵BC=AB,AC=AB+BC.∴ BC=AC=×6=2由线段的和差关系,得AB=AC-BC=6-2=4故答案为:4.【点睛】本题先根据线段中点的定义求出有关线段的长,再根据线段之间倍数关系,列出求解所求线段的式子即可.三、解答题1、【解析】【分析】根据,求出、的长度,再根据即可求解.【详解】解:,,,,,.【点睛】本题考查两点间的距离,解题的关键是根据条件先利用线段之间的关系得出线段、.2、 (1)见解析(2)见解析(3)见解析,两点之间,线段最短【解析】【分析】(1)根据题意作线段即可;(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;(3)作直线BC与射线AD交于点F,进而根据两点之间,线段最短即可求解(1)如图所示,作线段,AB即为所求;(2)如图所示,作射线AD,并在线段AD的延长线上用圆规截取DE=AB,射线AD,线段即为所求;(3)如图所示,作直线BC与射线AD交于点F,直线BC即为所求;线段AF+BF>AB,得出这个结论的依据是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】本题考查了画射线、线段、直线,两点之间线段最短,掌握线段的性质是解题的关键.3、 (1)(2),互补【解析】【分析】(1)先根据角平分线的定义求出∠BOC的度数,然后可求的度数;(2)先根据角平分线的定义求出∠COD、∠COE的度数,然后可求的度数,进而可判断与的数量关系.(1)解:∵平分,,∴,又∵,∴;(2)解:∵平分,平分,,∴,,∴,∴,∴与的数量关系是互补.【点睛】本题主要考查角平分线的定义和补角的定义,关键是根据补角的定义解答.如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.4、 (1)见解析(2)见解析【解析】【分析】(1)根据直线、射线的定义画图即可;(2)在BC的延长线上截取CD=BC即可.(1)解:如图,直线AC,射线BA即为所作;(2)解:如图,线段CD即为所作.【点睛】本题考查了直线、射线、线段的作图,熟练掌握作一条线段等于已知线段是解答本题的关键.5、 (1)(2)①2s;②s或s或s.【解析】【分析】(1)利用角的和差关系可得从而可得答案;(2)①先求解重合的时间,再画出图形,结合几何图形与角的和差关系列方程,再解方程即可;②分情况讨论:当时,结合①可得 当时, 当时,利用角的和差关系列方程 解方程即可,当时,如图,当 利用角的和差关系列方程 再解方程即可,当时, 当时,利用角的和差关系列方程,再解方程即可,从而可得答案.(1)解: , (2)解:① 则重合时的时间为:(s),当时, 解得: 所以当旋转2s时, ②当旋转到射线上时,(s),当时,结合①可得 当重合时,(s),重合时,(s),如图,所以当时, 当重合时,(s),如图,当时, 平分 解得: 当重合时,(s),当时,如图, 平分 解得: 不符合题意,舍去,当重合时,(s),当 平分 解得: 如图,当再次重合时,(s),当时, 如图,当重合时,(s)当时, 平分 解得: 综上:当时,s或s或s.【点睛】本题考查的是几何图形中角的和差关系,角的动态定义的理解,一元一次方程的应用,“数形结合与利用一元一次方程解决动态几何问题”是解本题的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题,共21页。试卷主要包含了下列说法错误的是,已知,则∠A的补角等于,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀课后作业题,共20页。试卷主要包含了下列说法正确的是,下列说法,如图,一副三角板等内容,欢迎下载使用。
这是一份2020-2021学年第五章 基本平面图形综合与测试优秀练习题,共20页。试卷主要包含了已知,则∠A的补角等于,已知点C等内容,欢迎下载使用。