鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀当堂达标检测题
展开六年级数学下册第五章基本平面图形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
2、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
3、如图,下列说法不正确的是( )
A.直线m与直线n相交于点D B.点A在直线n上
C.DA+DB<CA+CB D.直线m上共有两点
4、如图,已知点C为线段AB的中点,D为CB上一点,下列关系表示错误的是( )
A.CD=AC﹣DB B.BD+AC=2BC﹣CD
C.2CD=2AD﹣AB D.AB﹣CD=AC﹣BD
5、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )
A.3cm B.4cm C.5cm D.6cm
6、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )
A.一对 B.二对 C.三对 D.四对
7、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间) B.点B与点D重合
C.点B在线段CD的延长线上 D.点B在线段DC的延长线上
8、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )
A.5 B.6 C.7 D.8
9、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )
A.两点确定一条直线 B.两点之间线段最短
C.线段有两个端点 D.射线只有一个端点
10、如图,点A,B在线段EF上,点M,N分别是线段EA,BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长为( )cm
A.10 B.11 C.12 D.13
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、钟面上4时30分,时针与分针的夹角是______度,15分钟后时针与分针的夹角是_____度.
2、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
3、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.
4、转化0.15°为单位秒是______.
5、计算:________°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知线段AB
(1)请按下列要求作图:
①延长线段AB到C,使;
②延长线段BA到D,使;
(2)在(1)条件下,请直接回答线段BD与线段AC之间的数量关系;
(3)在(1)条件下,如果AB=2cm,请求出线段BD和CD的长度.
2、如图,将一副直角三角板的直角顶点C叠放在一起.
(1)若,则______;若,则______;
(2)猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.
(3)若,求∠DCE的度数.
3、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.
(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m.
(2)燕化附中在燕山向阳小学的 方向.
(3)小辰从燕山向阳小学出发,沿正东方向走200m,右转进入岗南路,沿岗南路向南走150m,左转进入迎风南路,沿迎风南路向正东方向走450m到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.
4、点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:
(1)当a=﹣1,b=5时,求线段AB的“和谐点”所表示的数;
(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.
5、如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.
(1)画射线;
(2)画直线;
(3)在直线上找一点P,使得最小.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
2、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
3、D
【解析】
【分析】
根据直线相交、点与直线、两点之间线段最短逐项判断即可得.
【详解】
解:A、直线与直线相交于点,则此项说法正确,不符合题意;
B、点在直线上,则此项说法正确,不符合题意;
C、由两点之间线段最短得:,则此项说法正确,不符合题意;
D、直线上有无数个点,则此项说法不正确,符合题意;
故选:D.
【点睛】
本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.
4、D
【解析】
【分析】
根据图形可以明确线段之间的关系,对线段CD、BD、AD进行和、差转化,即可发现错误选项.
【详解】
解:∵C是线段AB的中点,
∴AC=BC,AB=2BC=2AC,
∴CD=BC﹣BD=AB﹣BD=AC﹣BD;
∵BD+AC=AB﹣CD=2BC﹣CD;
∵CD=AD﹣AC,
∴2CD=2AD﹣2AC=2AD﹣AB;
∴选项A、B、C均正确.
而答案D中,AB﹣CD=AC+BD;
∴答案D错误符合题意.
故选:D.
【点睛】
本题考查线段的和差,是基础考点,掌握相关知识是解题关键.
5、B
【解析】
【分析】
设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.
【详解】
解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,
∵M为AB的中点,
∴AM=BM,
即BM=(8﹣x)cm,
∵N为CB的中点,
∴CN=NB,
∴NB,
∴MC+NB=x+(4﹣x)=4(cm),
故选:B.
【点睛】
本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.
6、C
【解析】
【分析】
根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.
【详解】
解:∵∠BOC=90°,∠COD=45°,
∴∠AOC=90°,∠BOD=45°,∠AOD=135°,
∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,
∴图中互为补角的角共有3对,
故选:C.
【点睛】
本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.
7、C
【解析】
【分析】
根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.
【详解】
解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
∴点B在线段CD的延长线上,
故选:C.
【点睛】
本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.
8、C
【解析】
【分析】
根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.
【详解】
解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,
而题目中从一个顶点引出4条对角线,
∴n-3=4,得到n=7,
∴这个多边形的边数是7.
故选:C.
【点睛】
本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.
9、A
【解析】
【分析】
根据经过两点有一条直线,并且只有一条直线即可得出结论.
【详解】
解:∵让男生站成一条直线,他先让前两个男生站好不动,
∴经过两点有一条直线,并且只有一条直线,
∴这种做法的数学依据是两点确定一条直线.
故选A.
【点睛】
本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.
10、C
【解析】
【分析】
由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.
【详解】
解:∵EA:AB:BF=1:2:3,
可以设EA=x,AB=2x,BF=3x,
而M、N分别为EA、BF的中点,
∴MA=EA=x,NB=BFx,
∴MN=MA+AB+BN=x+2x+x=4x,
∵MN=16cm,
∴4x=8,
∴x=2,
∴EF=EA+AB+BF=6x=12,
∴EF的长为12cm,
故选C.
【点睛】
本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
二、填空题
1、 45° 127.5°
【解析】
【分析】
根据时钟上一大格是30°,时针每分钟转0.5°进行计算即可.
【详解】
解:根据题意:钟面上4时30分,时针与分针的夹角是 ;
15分钟后时针与分针的夹角是 .
故答案为:45°,127.5°
【点睛】
本题考查了钟面角,熟练掌握时钟上一大格是30°,时针每分钟转0.5°是解题的关键.
2、140
【解析】
【分析】
先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
【详解】
解:由题意,可得∠AOB=40°,
则∠AOB的补角的大小为:180°−∠AOB=140°.
故答案为:140.
【点睛】
本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
3、
【解析】
【分析】
根据90°-∠α即可求得的值.
【详解】
解:∵∠α与∠β互余,且∠α=35°30′,
∴∠β
故答案为:
【点睛】
本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.
4、540秒
【解析】
【分析】
先把度化为分,再把分化为秒即可.
【详解】
故答案为:540秒
【点睛】
本题考查了度、分、秒之间的互化,注意它们相邻两个单位间的进率都是六十,且高级单位的量化为低级单位的量要乘以进率.
5、60.3
【解析】
【分析】
根据1=()°先把18化成0.3°即可.
【详解】
∵
∴18=18=0.3°
∴6018=60.3
故:答案为60.3.
【点睛】
本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.
三、解答题
1、 (1)①画图见解析;②画图见解析
(2)BD=1.5AC;
(3)cm,cm
【解析】
【分析】
(1)①先延长 再作即可;②先延长 再作即可;
(2)先证明 从而可得答案;
(3)由 结合 从而可得答案.
(1)
解:如图所示,BC、AD即为所求;
(2)
解:
(3)
解:∵AB=2cm,
∴AC=2AB=4cm,
∴AD=4cm,
∴BD=4+2=6cm,
∴CD=2AD=8cm.
【点睛】
本题考查的是作一条线段等于已知线段,线段的和差运算,熟练的利用作图得到的已知信息求解未知信息是解本题的关键.
2、 (1)145°,30°
(2)
(3)
【解析】
【分析】
(1)根据求解即可;
(2)(3)方法同(1)
(1)
解:∵,
∴
故答案为:;
(2)
,理由如下,
,
(3)
,,
【点睛】
本题考查了三角尺中角度的计算,找到关系式是解题的关键.
3、 (1)正西,100
(2)南偏东77°
(3)见解析
【解析】
【分析】
(1)根据图中位置解决问题即可.
(2)根据图中位置解决问题即可.
(3)根据题意画出路线即可.
(1)
燕山前进二小在燕山前进中学的正西方向,距离大约是.
故答案为:正西,100.
(2)
燕化附中在燕山向阳小学的南偏东方向
故答案为:南偏东.
(3)
小辰行走的路线如图:
【点睛】
本题考查作图应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.
4、 (1)3或11;
(2)a的值为-12,-9,-4,-3.
【解析】
【分析】
(1):设线段AB的“和谐点”表示的数为x,根据a=﹣1,b=5,分三种情况,①当时,
列出方程.②当时,列出方程.③当时,列出方程解方程即可.
(2):点O为AB的“和谐点”OA=2OB,列方程或,根据b=a+6且a<0,可得或解方程,当A为OB的“和谐点”当b<0时,AB=2AO,即6=-a,不合题意,当b>0时,AO=2AB,a=12>0,不合题意,当点B为AO的“和谐点”BA=2BO,点B在点O的左边,6=2(-a-6),点B在点O的右边,6=2(a+6),解方程即可.
(1)
解:设线段AB的“和谐点”表示的数为x,
①当时,
列出方程.
解得.(舍去)
②当时,
列出方程.
解得.
③当时,
列出方程
解得.
综上所述,线段AB的“和谐点”表示的数为3或11.
(2)
解:点O为AB的“和谐点”OA=2OB,
或,
∵b=a+6且a<0,
,
解得,
,
解得,
当A为OB的“和谐点”,
当b<0时,a<-6,AB=2AO,即6=-a,
解得a=-6,不合题意,
当b>0时,AO=2AB,即a=2×(b-a),
∵b=a+6,
解得a=12>0,不合题意,
当点B为AO的“和谐点”BA=2BO,
点B在点O的左边,6=2(-a-6),
解得:a=-9,
点B在点O的右边,6=2(a+6),
解得:a=-3,
综合a的值为-12,-9,-4,-3.
【点睛】
本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.
5、 (1)画图见解析;
(2)画图见解析;
(3)画图见解析.
【解析】
【分析】
(1)根据射线的定义连接BA并延长即可求解;
(2)根据直线的定义连接AC并向两端延长即可求解;
(3)连接AC和BD,根据两点之间线段最短可得AC与BD的交点即为点P.
(1)
解:如图所示,连接BA并延长即为要求作的射线BA,
(2)
解:连接AC并向两端延长即为要求作的直线AC,
(3)
解:如图所示,连接AC和BD,
∵两点之间线段最短,
∴当点P,B,D在一条直线上时,最小,
∴线段AC与BD的交点即为要求作的点P.
【点睛】
本题主要是考查了几何作图能力以及两点之间线段最短和直线的概念,熟练掌握画图技巧,是解决作图题的关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步练习题,共26页。试卷主要包含了下列现象,延长线段至点,分别取,如图所示,B,在数轴上,点M等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题,共21页。试卷主要包含了能解释,已知,则的补角的度数为等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品当堂达标检测题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品当堂达标检测题,共19页。试卷主要包含了已知,则的补角的度数为,如图,一副三角板,上午10等内容,欢迎下载使用。