![综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12733997/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12733997/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12733997/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题,共25页。试卷主要包含了已知与满足,下列式子表示的角,用度等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )A.105° B.125° C.135° D.145°2、延长线段至点,分别取、的中点、.若,则的长度( )A.等于 B.等于 C.等于 D.无法确定3、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( ) A.3 B.4 C.6 D.84、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )A. B. C. D.5、如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )A.北偏西55° B.北偏东65° C.北偏东35° D.北偏西35°6、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )A. B. C. D.7、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )A.①② B.①③ C.②④ D.③④8、用度、分,秒表示22.45°为( )A.22°45′ B.22°30′ C.22°27′ D.22°20′9、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )A. B.C.或 D.或10、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( )A.两点确定一条直线 B.两点之间直线最短C.两点之间线段最短 D.直线有两个端点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知线段AB=8cm,点C是线段AB靠近点A的四等分点,点D是BC的中点,则线段CD=_____cm.2、平面内,,C为内部一点,射线平分,射找平分,射线平分,当时,的度数是____________.3、如果∠A=55°30′,那么∠A的余角的度数等于______°.4、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.5、如图已知,线段,,为线段的中点,那么线段_________. 三、解答题(5小题,每小题10分,共计50分)1、已知:点O是直线AB上一点,过点O分别画射线OC,OE,使得.(1)如图,OD平分.若,求的度数.请补全下面的解题过程(括号中填写推理的依据).解:∵点O是直线AB上一点,∴.∵,∴.∵OD平分.∴( ).∴ °.∵,∴( ).∵ ,∴ °.(2)在平面内有一点D,满足.探究:当时,是否存在的值,使得.若存在,请直接写出的值;若不存在,请说明理由.2、数轴上不重合两点A,B.(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为 ;(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为 ;(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD上一点.设移动的时间为t(t>0)秒,①用含t的式子填空:点A表示的数为 ;点C表示的数为 ;②当点O是线段AB的中点时,直接写出t的取值范围.3、(1)如图1,已知线段a、b(),用无刻度的直尺和圆规画一条线段MN,使它等于(保留作图痕迹,不要求写作法).(2)如图2,已知点C在线段AB上,其中,,点E是AC的中点,点F在线段CB上,且,求线段EF的长度.4、如图,已知平面上三个点A,B,C,按要求完成下列作图(不写作法,只保留作图痕迹):(1)作直线AC,射线BA;(2)连接BC.并延长BC至点D,使CD=BC.5、如图,平分,平分.若,.(1)求出的度数;(2)求出的度数,并判断与的数量关系是互补还是互余. -参考答案-一、单选题1、B【解析】【分析】由题意知计算求解即可.【详解】解:由题意知故答案为:B.【点睛】本题考查了方位角的计算.解题的关键在于正确的计算.2、B【解析】【分析】由题意知,如图分两种情况讨论①②;用已知线段表示求解即可.【详解】解:由题意知①如图1∵,∴;②如图2∵,∴;综上所述,故选B.【点睛】本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.3、B【解析】【分析】根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.【详解】解:E、F分别是线段AC、AB的中点,AC=2AE=2CE,AB=2AF=2BF,EF=AE﹣AF=22AE﹣2AF=AC﹣AB=2EF=4,BC=AC﹣AB=4,故选:B.【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.4、C【解析】【分析】根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.【详解】解:,点A到原点的距离最大,点其次,点最小,又,原点的位置是在点、之间且靠近点的地方,,故选:.【点睛】此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.5、D【解析】【分析】如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,即可得到答案.【详解】解:假设两船相撞,如同所示,根据两船的速度相同可得AC=BC,∴∠CBA=∠CAB=90°-35°=55°,∴乙的航向不能是北偏西35°,故选:D.【点睛】此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.6、B【解析】【分析】由图知,∠AOB=180°−+,从而可求得结果.【详解】∠AOB=180°−+=180°-37°=143°故选:B【点睛】本题考查了方位角及角的和差运算,掌握角的和差运算是关键.7、B【解析】【分析】将每项加上判断结果是否等于90°即可.【详解】解:①∵+=90°,故该项是的余角;②∵,∴,∴+=90°+,故该项不是的余角;③∵,∴+=90°,故该项是的余角;④∵,∴+=120°,故该项不是的余角;故选:B.【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.8、C【解析】【分析】将化成即可得.【详解】解:∵,∴,故选:C.【点睛】题目主要考查角度间的换算公式,熟练掌握角度间的变换进率是解题关键.9、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.10、A【解析】【分析】根据直线公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.二、填空题1、3【解析】【分析】先根据四等分点的定义可得的长,根据线段的差可得的长,最后根据线段中点的定义可得结论.【详解】解:,点是线段靠近点的四等分点,,,点是线段的中点,.故答案为:3.【点睛】本题考查了两点间的距离,线段的中点以及线段的四等分点的概念,解题的关键是正确得出.2、45°或15°【解析】【分析】根据角平分线的定义和角的运算,分射线OD在∠AOC外部和射线OD在∠AOC内部求解即可.【详解】解:∵射线平分,射找平分,∴∠MOC= ∠AOC,∠NOC= ∠BOC,∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB=60°,∵射线平分,∴∠MOD= ∠MON=30°,若射线OD在∠AOC外部时,如图1,则∠COD=∠MOD-∠MOC=30°-∠AOC,即2∠COD=60°-∠AOC,∵,∴,解得:∠AOC=45°或15°;若射线OD在∠AOC内部时,如图2,则∠COD=∠MOC-∠MOD=∠AOC-30°,∴2∠COD=∠AOC-60°,即∠AOC-2∠COD=60°,不满足,综上,∠AOC=45°或15°,故答案为:45°或15°. 【点睛】本题考查角平分线的定义、角的运算,熟练掌握角平分线的定义和角的有关计算,利用分类讨论思想求解是解答的关键.3、34.5【解析】【分析】根据余角定义解答.【详解】解:∵∠A=55°30′,∴∠A的余角的度数为=34.5°,故答案为:34.5.【点睛】此题考查了余角的定义:相加为90°的两个角互为余角,熟记余角定义是解题的关键.4、140【解析】【分析】先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.【详解】解:由题意,可得∠AOB=40°,则∠AOB的补角的大小为:180°−∠AOB=140°.故答案为:140.【点睛】本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.5、6【解析】【分析】根据为线段的中点,可得,即可求解.【详解】解:为线段的中点,,.故答案为:6【点睛】本题主要考查了有关中点的计算,熟练掌握把一条线段分成相等的两段的点,叫做这条线段的中点是解题的关键.三、解答题1、(1)角平分线的定义;70;垂直的定义;DOC;EOC;160;(2)存在,的值为120°或144°或【解析】【分析】(1)根据角平分线的定义和垂直定义,结合所给解题过程进行补充即可;(2)分三种情况讨论:①点D,C,E在AB上方时,②当点D在AB的下方,C,E在AB上方时,③如图,当D在AB上方,E,C在AB下方时,用含有α的式子表示出和∠BOE,由列式求解即可.【详解】解:(1)∵点O是直线AB上一点,∴.∵,∴.∵OD平分.∴( 角平分线的定义 ).∴ 70 °.∵,∴( 垂直的定义 ).∵ DOC EOC ,∴ 160 °.故答案为:角平分线定义;70;垂直的定义;DOC;EOC;160;(2)存在, 或144°或 ①点D,C,E在AB上方时,如图,∵, ∴ ∵∴ ∵∴ ∴②当点D在AB的下方,C,E在AB上方时,如图,∵ ∴ ∵ ∴ ∴ ∵ ∴∴ ③如图,当D在AB上方,E,C在AB下方时,同理可得: , 解得: 综上,的值为120°或144°或【点睛】本题主要考查角平分线和补角,熟练掌握角平分线的定义和补角的定义是解题的关键.2、 (1)(2)5(3)①,;②且【解析】【分析】(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为,用点C运动的速度×运动时间+起点表示数得出点C表示的数为;②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.(1)解:∵点A表示的数为﹣3,点B表示的数为1,∴AB=1-(-3)=1+3=4,∵点M为AB中点,∴AM=BM,∴点M表示的数为:-3+2=-1,故答案为:-1;(2)解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,∴AN=1-(-3)=1+3=4,∵点N为AB中点,∴AB=2AN=2×4=8,∴点B表示的数为:-3+8=5,故答案为:5;(3)①点A表示的数为, 点C表示的数为, 故答案为:;;②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,∴-3+3t+t=5-(-3),∴t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,∴t≠5,当点B与点D重合时,点A运动到1,-5+t=1,∴t=6,∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.【点睛】本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.3、(1)见解析;(2)4cm【解析】【分析】(1)先画一条射线AP,依次截取AB=BN=a,AM=b,即可得到所求作的线段;(2)利用,,求出AB,根据点E是AC的中点,分别求出CE、CF的长,相加即可得到线段EF的长度.【详解】解:(1)线段MN即为所求作的线段;(2)∵,,∴AB=AC+BC=10cm,∵点E是AC的中点,∴,∵,∴∴EF=CE+CF=4cm.【点睛】此题考查了线段的和差作图,线段中点的有关计算,正确掌握作线段等于已知线段的方法及线段中点的定义是解题的关键.4、 (1)见解析(2)见解析【解析】【分析】(1)根据直线、射线的定义画图即可;(2)在BC的延长线上截取CD=BC即可.(1)解:如图,直线AC,射线BA即为所作;(2)解:如图,线段CD即为所作.【点睛】本题考查了直线、射线、线段的作图,熟练掌握作一条线段等于已知线段是解答本题的关键.5、 (1)(2),互补【解析】【分析】(1)先根据角平分线的定义求出∠BOC的度数,然后可求的度数;(2)先根据角平分线的定义求出∠COD、∠COE的度数,然后可求的度数,进而可判断与的数量关系.(1)解:∵平分,,∴,又∵,∴;(2)解:∵平分,平分,,∴,,∴,∴,∴与的数量关系是互补.【点睛】本题主要考查角平分线的定义和补角的定义,关键是根据补角的定义解答.如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀测试题,共23页。试卷主要包含了在数轴上,点M,下列两个生活等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步达标检测题,共25页。试卷主要包含了下列各角中,为锐角的是,在数轴上,点M等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步练习题,共24页。试卷主要包含了下列说法中正确的是,用度,如图,射线OA所表示的方向是,下列说法正确的是等内容,欢迎下载使用。