![综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734001/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734001/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734001/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀当堂达标检测题
展开
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀当堂达标检测题,共24页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间,线段最短 B.两点确定一条直线C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离2、延长线段至点,分别取、的中点、.若,则的长度( )A.等于 B.等于 C.等于 D.无法确定3、若的补角是,则的余角是( )A. B. C. D.4、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )A.3cm B.4cm C.5cm D.6cm5、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )A.两点之间线段最短 B.过一点有无数条直线C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离6、下列说法中正确的是( )A.两点之间所有的连线中,直线最短 B.射线AB和射线BA是同一条射线C.一个角的余角一定比这个角大 D.一个锐角的补角比这个角的余角大90°7、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是( )A.过一点有无数条直线 B.两点确定一条直线C.两点之间线段最短 D.线段是直线的一部分8、一个角的度数为54°12',则这个角的补角度数等于( )A.125°48' B.125°88' C.135°48' D.136°48'9、下列图形中,能用,,三种方法表示同一个角的是( )A. B.C. D.10、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、式子的最小值是______.2、已知∠1的余角等于,那么∠1的补角等于______.3、如图,点,是直线上的两点,点,在直线上且点在点的左侧,点在点的右侧,,.若,则____.4、如果∠A=34°,那么∠A的余角的度数为_____°.5、如图,在灯塔O处观测到轮船A位于北偏西53°的方向,同时轮船B在南偏东17°的方向,那么______°.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:-12+(-3)2(2)一个角是它的余角的两倍,求这个角2、如图,P是线段AB上不同于点A,B的一点,AB=18cm,C,D两动点分别从点P,B同时出发,在线段AB上向左运动(无论谁先到达A点,均停止运动),点C的运动速度为1cm/s,点D的运动速度为2cm/s.(1)若AP=PB,①当动点C,D运动了2s时,AC+PD= cm;②当C,D两点间的距离为5cm时,则运动的时间为 s;(2)当点C,D在运动时,总有PD=2AC,①求AP的长度;②若在直线AB上存在一点Q,使AQ﹣BQ=PQ,求PQ的长度.3、如图,、两点把线段分成三部分,,为的中点.(1)判断线段与的大小关系,说明理由.(2)若,求的长.4、如图,O为直线AB上一点,与互补,OM,ON分别是,的平分线.(1)根据题意,补全下列说理过程:∵与互补,∴.又___________=180°,∴∠_________=∠_________.(2)若,求的度数.(3)若,则(用表示).5、已知点A、B、C在同一条直线上,点M、N分别是AC、BC的中点,且AC=a,BC=b. (1)如图①,若点C在线段AB上,a=4,b=6,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,请直接写出你的猜想结果,MN的长度为 (用含有a,b的代数式表示),不必说明理由;(3)若点C在线段AB的延长线上,其它条件不变,请在图②中画出图形,试猜想MN的长度为 (用含有a,b的代数式表示,a>b),并说明理由. -参考答案-一、单选题1、A【解析】【分析】根据两点之间线段最短的性质解答.【详解】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:A.【点睛】此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.2、B【解析】【分析】由题意知,如图分两种情况讨论①②;用已知线段表示求解即可.【详解】解:由题意知①如图1∵,∴;②如图2∵,∴;综上所述,故选B.【点睛】本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.3、B【解析】【分析】直接利用一个角的余角和补角差值为90°,进而得出答案.【详解】解:∵∠α的补角等于130°,∴∠α的余角等于:130°-90°=40°.故选:B.【点睛】本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.4、B【解析】【分析】设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.【详解】解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,∵M为AB的中点,∴AM=BM,即BM=(8﹣x)cm,∵N为CB的中点,∴CN=NB,∴NB,∴MC+NB=x+(4﹣x)=4(cm),故选:B.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.5、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.【详解】结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.6、D【解析】【分析】分别根据线段的性质、射线、余角、补角等定义一一判断即可.【详解】解:A.两点之间所有的连线中,线段最短,故此选项错误;B.射线AB和射线BA不是同一条射线,故此选项错误;C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;故选:D【点睛】本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.7、B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.∴能解释这一实际应用的数学知识是两点确定一条直线.故选:B.【点睛】本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.8、A【解析】【分析】由计算求解即可.【详解】解:∵∴这个角的补角度数为故选A.【点睛】本题考查了补角.解题的关键在于明确.9、A【解析】【分析】根据角的表示的性质,对各个选项逐个分析,即可得到答案.【详解】A选项中,可用,,三种方法表示同一个角;B选项中,能用表示,不能用表示;C选项中,点A、O、B在一条直线上,∴能用表示,不能用表示;D选项中,能用表示,不能用表示;故选:A.【点睛】本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.10、B【解析】【分析】先求出,再根据中点求出,即可求出的长.【详解】解:∵,∴,,∵点是线段的中点,∴,,故选:B.【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.二、填空题1、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P与点C不重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+PC;∵AE+BD+PC> AE+BD,∴当点P与点C重合时,点P到A、B、C、D、E各点的距离之和最小,令数轴上数x表示的为P,则表示点P到A、B、C、D、E各点的距离之和,∴当x=2时,取得最小值,∴的最小值==5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.2、135°20′【解析】【分析】求出∠1的度数,再求∠1的补角即可.【详解】解:∵∠1的余角等于,∴∠1=90°-45°20′=44°40′,∴∠1的补角为180°-∠1=180°-44°40′=135°20′,故答案为:135°20′.【点睛】本题考查互为余角,互为补角的意义,正确理解互余、互补的意义和度分秒的计算方法是解题的前提.3、6或22##22或6【解析】【分析】根据两点间的距离,分情况讨论C点的位置即可求解.【详解】解:∵,∴点C不可能在A的左侧,如图1,当C点在A、B之间时,设BC=k,∵AC:CB=2:1,BD:AB=3:2,则AC=2k,AB=3k,BD=k,∴CD=k+k=k,∵CD=11,∴k=11,∴k=2,∴AB=6;如图2,当C点在点B的右侧时,设BC=k,∵AC:CB=2:1,BD:AB=3:2,则AC=2k,AB=k,BD=k,∴CD=k-k=k,∵CD=11,∴k=11,∴k=22,∴AB=22;∴综上所述,AB=6或22.【点睛】本题考查了两点间的距离,线段的数量关系,以及一元一次方程的应用,分类讨论是解答本题的关键.4、56【解析】【分析】根据余角的定义即可求得.【详解】解:∠A的余角为90°−∠A=90°−34°=56°故答案为:56【点睛】本题考查了余角的定义,掌握余角的定义是关键,这是基础题.5、144【解析】【分析】先根据题意可得∠AOD=90°-53°=37°,再根据题意可得∠EOB=17°,然后再根据角的和差关系可得答案.【详解】解:如图,∵在灯塔O处观测到轮船A位于北偏西53°的方向,∴∠AOC=53°,∴∠AOD=90°-53°=37°,∵轮船B在南偏东17°的方向,∴∠EOB=17°,∴∠AOB=37°+90°+17°=144°,故答案为:144.【点睛】此题主要考查了方向角,关键是掌握方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.三、解答题1、(1)-3;(2)这个角的度数为60°.【解析】【分析】(1)先计算乘方,再计算加减即可;(2)设这个角的度数为x,然后根据题意列出方程,解方程即可.【详解】解:(1)-12+(-3)2;(2)设这个角的度数为x,则它的余角为90°-x,由题可得:,解得:x=60°,答:这个角的度数为60°.【点睛】本题考查了余角,有理数的混合运算,熟练掌握余角的意义是解题的关键.2、 (1)①12;②4(2)①;②或【解析】【分析】(1)①先根据线段和差求出,再根据运动速度和时间求出的长,从而可得的长,由此即可得;②设运动时间为,先求出的取值范围,再求出当点重合时,,从而可得当时,点一定在点的右侧,然后根据建立方程,解方程即可得;(2)①设运动时间为,则,从而可得,再根据当在运动时,总有可得在点的运动过程中,点始终在线段上,此时满足,然后根据即可得出答案;②分点在线段上和点在的延长线上两种情况,分别根据线段和差即可得.(1)解:①,,当动点运动了时,,,,故答案为:12;②设运动时间为,点运动到点所需时间为,点运动到点所需时间为,则,由题意得:,则,当点重合时,,即,解得,所以当时,点一定在点的右侧,则,即,解得,即当两点间的距离为时,运动的时间为,故答案为:4.(2)解:①设运动时间为,则,,,当在运动时,总有,即总有,的值与点的位置无关,在点的运动过程中,点始终在线段上,此时满足,,又,,解得,答:的长度为;②由题意,分两种情况:(Ⅰ)当点在线段上时,,点在点的右侧,,,代入得:,解得;(Ⅱ)当点在的延长线上时,则,代入得:;综上,的长度为或.【点睛】本题考查了线段的和差、一元一次方程的几何应用等知识,较难的是题(2)②,正确分两种情况讨论是解题关键.3、 (1),见解析(2)50【解析】【分析】(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,表示出CM,即可求解;(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.(1).理由如下:设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,∴AM=DM=AD=5x,∴CM=DM-CD=5x-3x=2x,∴AB=CM;(2)∵CM=10cm,CM=2x,∴2 x=10,解得x=5,∴AD=10x=50cm.【点睛】本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.4、 (1)BOC; AOD;BOC;(2)22°.(3).【解析】【分析】(1)根据与互补,得出.根据 BOC =180°,利用同角的补角性质得出∠AOD=∠BOC.(2)根据OM是∠AOC的平分线.得出∠AOC=2∠MOC=2×68°=136°,根据∠AOC与∠AOD互补,求出∠AOD=180°﹣136°=44°,再根据ON是∠AOD的平分线.可得∠AON=∠AOD=22°.(3)根据OM是∠AOC的平分线.得出∠AOC=2,根据∠AOC与∠AOD互补,可求∠AOD=180°﹣,根据ON是∠AOD的平分线.得出∠AON=∠AOD=.(1)解:∵与互补,∴.又 BOC =180°,∴∠AOD=∠BOC.故答案为:BOC; AOD;BOC;(2)解:∵OM是∠AOC的平分线.∴∠AOC=2∠MOC=2×68°=136°,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣136°=44°,∵ON是∠AOD的平分线.∴∠AON=∠AOD=22°.(3)解:∵OM是∠AOC的平分线.∴∠AOC=2,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣,∵ON是∠AOD的平分线.∴∠AON=∠AOD=.【点睛】本题考查补角性质,同角的补角性质,角平分线定义,角的和差倍分计算,掌握补角性质,同角的补角性质,角平分线定义,角的和差倍分计算是解题关键.5、 (1)线段MN的长为5;(2);(3),图见解析,理由见解析.【解析】【分析】(1)根据线段中点可得,,结合图形求解即可得;(2)根据线段中点的性质可得,,结合图形求解即可得;(3)根据题意,作出图形,然后根据线段中点的性质求解即可得.(1)解:∵ 点M、N分别是AC、BC的中点,∴ ,,∴ ;(2)解:∵ 点M、N分别是AC、BC的中点,,,∴ ,,∴ ,故答案为:;(3)猜想:;理由如下:如图所示: ∵ 点M、N分别是AC、BC的中点∴ ∴ ,故答案为:.【点睛】题目主要考查线段中点及求线段长度,理解题意,结合图形进行分析是解题关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试达标测试,共27页。试卷主要包含了如图所示,由A到B有①,上午8,下列说法中正确的是,下列命题中,正确的有等内容,欢迎下载使用。
这是一份初中数学第五章 基本平面图形综合与测试优秀课后练习题,共29页。试卷主要包含了如图,D等内容,欢迎下载使用。
这是一份2020-2021学年第五章 基本平面图形综合与测试精品精练,共20页。试卷主要包含了下列四个说法,用度等内容,欢迎下载使用。