初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品随堂练习题
展开六年级数学下册第五章基本平面图形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( )
A.3 B.4 C.6 D.8
2、如图,下列说法不正确的是( )
A.直线m与直线n相交于点D B.点A在直线n上
C.DA+DB<CA+CB D.直线m上共有两点
3、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A. B. C. D.
4、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′ B.144°81′ C.54°41′ D.54°81′
5、下列说法中正确的是( )
A.两点之间直线最短 B.单项式πx2y的系数是
C.倒数等于本身的数为±1 D.射线是直线的一半
6、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
7、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( )
A.两点确定一条直线 B.两点之间直线最短
C.两点之间线段最短 D.直线有两个端点
8、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )
A.两点之间线段最短 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离
9、如图,已知线段n与挡板另一侧的四条线段a,b,c,d中的一条在同一条直线上,请借助直尺判断该线段是( )
A.a B.b C.c D.d
10、若的补角是,则的余角是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.
2、将一副直角三角板按如图放置,使两直角重合,则∠1的度数为______.
3、如图,延长线段AB到C,使BC=AB,D为线段AC的中点,若DC=3,则AB=______.
4、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.
5、如果一个角的补角是,那么这个角的度数是________.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)
(1)若,当点运动了,求的值;
(2)若点运动时,总有,试说明;
(3)如图2,已知,是线段所在直线上一点,且,求的值.
2、如图,已知平分平分.
(1)求的度数.
(2)求的度数.
3、如图,P是线段AB上不同于点A,B的一点,AB=18cm,C,D两动点分别从点P,B同时出发,在线段AB上向左运动(无论谁先到达A点,均停止运动),点C的运动速度为1cm/s,点D的运动速度为2cm/s.
(1)若AP=PB,
①当动点C,D运动了2s时,AC+PD= cm;
②当C,D两点间的距离为5cm时,则运动的时间为 s;
(2)当点C,D在运动时,总有PD=2AC,
①求AP的长度;
②若在直线AB上存在一点Q,使AQ﹣BQ=PQ,求PQ的长度.
4、如图,直线、相交于点,,.
(1)若,则 __________.
(2)从(1)的时刻开始,若将绕以每秒15的速度逆时针旋转一周,求运动多少秒时,直线平分.
(3)从(1)的时刻开始,若将绕点逆时针旋转一周,如果射线是的角平分线,请直接写出此过程中与的数量关系.(不考虑与、重合的情况)
5、已知∠AOB是直角,∠AOC是锐角,OC在∠AOB的内部,OD平分∠AOC,OE平分∠BOC.
(1)根据题意画出图形;
(2)求出∠DOE的度数;
(3)若将条件“∠AOB是直角”改为“∠AOB为锐角,且∠AOB=n°”,其它条件不变,请直接写出∠DOE的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.
【详解】
解:E、F分别是线段AC、AB的中点,
AC=2AE=2CE,AB=2AF=2BF,
EF=AE﹣AF=2
2AE﹣2AF=AC﹣AB=2EF=4,
BC=AC﹣AB=4,
故选:B.
【点睛】
本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.
2、D
【解析】
【分析】
根据直线相交、点与直线、两点之间线段最短逐项判断即可得.
【详解】
解:A、直线与直线相交于点,则此项说法正确,不符合题意;
B、点在直线上,则此项说法正确,不符合题意;
C、由两点之间线段最短得:,则此项说法正确,不符合题意;
D、直线上有无数个点,则此项说法不正确,符合题意;
故选:D.
【点睛】
本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.
3、D
【解析】
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
4、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
5、C
【解析】
【分析】
分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.
【详解】
解:A.两点之间线段最短,故不符合题意;
B.单项式πx2y的系数是,不符合题意;
C.倒数等于本身的数为±1,故符合题意;
D.射线是是直线的一部分,故不符合题意;
故选:C.
【点睛】
本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.
6、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
7、A
【解析】
【分析】
根据直线公理“两点确定一条直线”来解答即可.
【详解】
解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.
故选:A.
【点睛】
本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.
8、C
【解析】
【分析】
结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.
【详解】
结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.
9、B
【解析】
【分析】
利用直尺画出遮挡的部分即可得出结论.
【详解】
解:利用直尺画出图形如下:
可以看出线段b与n在一条直线上.
故选:B.
【点睛】
本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.
10、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
二、填空题
1、两点确定一条直线
【解析】
【分析】
根据两点确定一条直线,即可求解.
【详解】
解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.
故答案为:两点确定一条直线
【点睛】
本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.
2、165°
【解析】
【分析】
由三角板得∠C=30°,得到∠BAC的度数,利用邻补角关系得到∠1的度数.
【详解】
解:如图,∵∠C=30°,
∴∠BAC=45°-30°=15°,
∴∠1=180°-∠BAC=165°,
故答案为:165°.
【点睛】
此题考查了三角板有关的计算,正确掌握三角板各角的度数及邻补角的定义是解题的关键.
3、4
【解析】
【分析】
根据线段中点的性质,可得AC的长,再根据题目已知条件找到BC和AC之间的关系,用AC减去BC就得AB的长度
【详解】
解:由D为AC的中点,得
AC=2DC
=2×3
=6
又∵BC=AB,AC=AB+BC.
∴ BC=AC
=×6
=2
由线段的和差关系,得
AB=AC-BC
=6-2
=4
故答案为:4.
【点睛】
本题先根据线段中点的定义求出有关线段的长,再根据线段之间倍数关系,列出求解所求线段的式子即可.
4、
【解析】
【分析】
根据90°-∠α即可求得的值.
【详解】
解:∵∠α与∠β互余,且∠α=35°30′,
∴∠β
故答案为:
【点睛】
本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.
5、60°##60度
【解析】
【分析】
根据和为180度的两个角互为补角求解即可.
【详解】
解:根据定义一个角的补角是120°,
则这个角是180°-120°=60°,
故答案为:60°.
【点睛】
本题考查了补角的定义,掌握补角的定义是解题的关键.
三、解答题
1、 (1)2cm
(2)见解析
(3)或
【解析】
【分析】
(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;
(2)根据题意可得出,.再由,可求出,从而可求出,即证明;
(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.
(1)
∵时间时,
,,
∴
;
(2)
∵,,
又∵,
∴,
∴,
∴,
∴;
(3)
①如图,当点在线段上时,
∵,
∴,
∴,
∴;
②如图,当点在线段的延长线上时,
∵,
∴,
∴,
③如图,当点在线段的延长线上时,
,这种情况不可能,
综上可知,的值为或.
【点睛】
本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.
2、 (1)60°
(2)10°
【解析】
【分析】
(1)根据角平分线的定义得∠AOC =2∠AOB,即可求解;
(2)先求出∠COE的度数,再求出∠DOE的度数,最后根据∠COD=∠COE-∠DOE计算即可.
(1)
∠AOB =,OB平分∠AOC
∠AOC =2∠AOB=2=
(2)
∠AOE=,∠AOC =
∠COE=∠AOE-∠AOC=-=
又OD平分∠AOE
∠DOE=∠AOE==70°
∠COD=∠COE-∠DOE=-=
【点睛】
本题主要考查角平分线的定义,掌握角平分线把已知角分成两个相等的角是解题的关键.
3、 (1)①12;②4
(2)①;②或
【解析】
【分析】
(1)①先根据线段和差求出,再根据运动速度和时间求出的长,从而可得的长,由此即可得;
②设运动时间为,先求出的取值范围,再求出当点重合时,,从而可得当时,点一定在点的右侧,然后根据建立方程,解方程即可得;
(2)①设运动时间为,则,从而可得,再根据当在运动时,总有可得在点的运动过程中,点始终在线段上,此时满足,然后根据即可得出答案;
②分点在线段上和点在的延长线上两种情况,分别根据线段和差即可得.
(1)
解:①,
,
当动点运动了时,,
,
,
故答案为:12;
②设运动时间为,
点运动到点所需时间为,点运动到点所需时间为,
则,
由题意得:,
则,
当点重合时,,即,
解得,
所以当时,点一定在点的右侧,
则,即,
解得,
即当两点间的距离为时,运动的时间为,
故答案为:4.
(2)
解:①设运动时间为,则,
,
,
当在运动时,总有,即总有,
的值与点的位置无关,
在点的运动过程中,点始终在线段上,此时满足,
,
又,
,
解得,
答:的长度为;
②由题意,分两种情况:
(Ⅰ)当点在线段上时,
,
点在点的右侧,
,,
代入得:,解得;
(Ⅱ)当点在的延长线上时,则,
代入得:;
综上,的长度为或.
【点睛】
本题考查了线段的和差、一元一次方程的几何应用等知识,较难的是题(2)②,正确分两种情况讨论是解题关键.
4、 (1)30°
(2)11或23秒
(3)或
【解析】
【分析】
(1)根据,,利用余角性质得出∠EOB=90°-∠COE=90°-30°=60°,根据,利用余角性质得出∠BOF=90°-∠EOB=90°-60°=30°即可;
(2)解分两种情形,平分,得出,,设运动秒时 根据运动转过的角度列方程,平分,,根据运动转过的角度列方程,解方程即可;
(3)分四种情况OE在∠COB内,OE在∠AOC内,OE在∠AOD内,OE在∠DOB内,根据射线是的角平分线∠COP=∠EOP,利用角的和差计算即可.
(1)
解:∵,,
∴∠EOB=90°-∠COE=90°-30°=60°,
∵,
∴∠BOF=90°-∠EOB=90°-60°=30°,
故答案是:30°;
(2)
解分两种情形,
情况一
∵平分,
∴,
∴,
设运动秒时,平分,
根据题意得:,
解得:;
情况二
∵平分,
∴,
设运动秒时,平分,
根据题意得:,
解得:;
综上:运动11或23秒时,直线平分;
(3)
解:∵射线是的角平分线
∴∠COP=∠EOP,∠AOC=∠EOF=90°,
∴∠AOP=90°+∠COP=90°+∠POE,
∵∠COE=∠BOF,
∴∠POE=,
∴,
∵∠COE=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°-∠COP=90°-,
∴,
∵∠COE=90°+∠COF=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°-∠COP=90°-,
∴,
∵∠COE=90°+∠BOE=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°+∠COP=90°+,
∴;
综上:或.
【点睛】
本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.
5、 (1)见解析
(2)45°
(3)n°
【解析】
【分析】
(1)根据要求画出图形即可;
(2)利用角平分线的定义计算即可;
(3)利用(2)中,结论解决问题即可.
(1)
解:图形如图所示.
,
(2)
解:∵OD平分∠AOC,OE平分∠BOC,
∴∠DOC=∠AOC,∠EOC=∠BOC,
∴∠DOE=(∠AOC+∠BOC)=∠AOB,
∵∠AOB=90°,
∴∠DOE=45°;
(3)
解:当∠AOB为锐角,且∠AOB=n°时,由(2)可知∠DOE=n°.
【点睛】
本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课时训练: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课时训练,共23页。试卷主要包含了在下列生活,如图,射线OA所表示的方向是,图中共有线段等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀精练: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀精练,共26页。试卷主要包含了下列说法错误的是,延长线段至点,分别取,如果A,如图,一副三角板,如图所示,点E等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品单元测试当堂检测题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品单元测试当堂检测题,共24页。试卷主要包含了如图,下列说法不正确的是,延长线段至点,分别取,如图,OM平分,,,则,已知,则的补角等于等内容,欢迎下载使用。