鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀测试题
展开六年级数学下册第五章基本平面图形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中正确的是( )
A.两点之间所有的连线中,直线最短 B.射线AB和射线BA是同一条射线
C.一个角的余角一定比这个角大 D.一个锐角的补角比这个角的余角大90°
2、下列各角中,为锐角的是( )
A.平角 B.周角 C.直角 D.周角
3、若的补角是,则的余角是( )
A. B. C. D.
4、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )
A. B.
C.或 D.或
5、如图,在方格纸中,点A,B,C,D,E,F,H,K中,在同一直线上的三个点有( ).
A.3组 B.4组 C.5组 D.6组
6、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
7、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
8、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A地到B地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )
A.①② B.①③ C.②④ D.③④
9、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
10、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( )
A.3 B.4 C.6 D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是______.
2、已知点C,D在直线AB上,且,若,则CD的长为______.
3、一个角为,则它的余角度数为 _____.
4、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
5、如果∠A=55°30′,那么∠A的余角的度数等于______°.
三、解答题(5小题,每小题10分,共计50分)
1、已知线段(如图),C是AB反向延长线上的点,且,D为线段BC的中点.
(1)将CD的长用含a的代数式表示为________;
(2)若,求a的值.
2、【概念与发现】
当点C在线段AB上,时,我们称n为点C在线段AB上的“点值”,记作.
例如,点C是AB的中点时,即,则;
反之,当时,则有.
因此,我们可以这样理解:“”与“”具有相同的含义.
【理解与应用】
(1)如图,点C在线段AB上.若,,则________;
若,则________AB.
【拓展与延伸】
(2)已知线段,点P以1cm/s的速度从点A出发,向点B运动.同时,点Q以3cm/s的速度从点B出发,先向点A方向运动,到达点A后立即按原速向点B方向返回.当P,Q其中一点先到达终点时,两点均停止运动.设运动时间为t(单位:s).
①小王同学发现,当点Q从点B向点A方向运动时,的值是个定值,则m的值等于________;
②t为何值时,.
3、如图,将两块三角板的直角顶点重合.
(1)写出以C为顶点相等的角;
(2)若∠ACB=150°,求∠DCE的度数.
4、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为的“三倍距点”,当CB=3CA时,我们称C为的“三倍距点”, 点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b﹣5|=0.
(1)a= ,b= ;
(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C表示的数为 ;
(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当为M,N两点的“三倍距点”时,求t的值.
5、如图(1),直线、相交于点,直角三角板边落在射线上,将三角板绕点逆时针旋转180°.
(1)如图(2),设,当平分时,求(用表示)
(2)若,
①如图(3),将三角板旋转,使落在内部,试确定与的数量关系,并说明理由.
②若三角板从初始位置开始,每秒旋转5°,旋转时间为,当与互余时,求的值.
-参考答案-
一、单选题
1、D
【解析】
【分析】
分别根据线段的性质、射线、余角、补角等定义一一判断即可.
【详解】
解:A.两点之间所有的连线中,线段最短,故此选项错误;
B.射线AB和射线BA不是同一条射线,故此选项错误;
C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;
D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;
故选:D
【点睛】
本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.
2、B
【解析】
【分析】
求出各个选项的角的度数,再判断即可.
【详解】
解:A. 平角=90°,不符合题意;
B. 周角=72°,符合题意;
C. 直角=135°,不符合题意;
D. 周角=180°,不符合题意;
故选:B.
【点睛】
本题考查了角的度量,解题关键是明确周角、平角、直角的度数.
3、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
4、D
【解析】
【分析】
分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.
【详解】
解:当OC在∠AOB内部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=∠BOC;
当OC在∠AOB外部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=3∠BOC;
综上,∠AOC=∠BOC或∠AOC=3∠BOC;
故选:D.
【点睛】
本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.
5、C
【解析】
【分析】
利用网格作图即可.
【详解】
如图:
在同一直线上的三个点有A、B、C;B、E、K;C、H、E;D、E、F;D、H、K,共5组,
故选:C
【点睛】
此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.
6、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
7、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
8、D
【解析】
【分析】
分别利用直线的性质以及线段的性质分析得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;
③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;
④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;
故选:D.
【点睛】
此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.
9、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
10、B
【解析】
【分析】
根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.
【详解】
解:E、F分别是线段AC、AB的中点,
AC=2AE=2CE,AB=2AF=2BF,
EF=AE﹣AF=2
2AE﹣2AF=AC﹣AB=2EF=4,
BC=AC﹣AB=4,
故选:B.
【点睛】
本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.
二、填空题
1、两点之间线段最短
【解析】
【分析】
根据“两点之间线段最短”解答即可.
【详解】
解:修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是:两点之间线段最短.
故答案为:两点之间线段最短.
【点睛】
本题考查了线段的性质,熟练掌握熟练掌握两点之间线段最短是解答本题的关键.
2、3或7或11
【解析】
【分析】
分三种情况讨论,当在线段上,当在的左边,在线段上,当在的左边,在的右边,再利用线段的和差关系可得答案.
【详解】
解:如图,当在线段上,
,,
如图,当在的左边,在线段上,
,,
如图,当在的左边,在的右边,
,,
故答案为:3或7或11
【点睛】
本题考查的是线段的和差运算,清晰的分类讨论是解本题的关键.
3、
【解析】
【分析】
根据余角的定义计算即可.
【详解】
解:90°-,=,
故答案为:.
【点睛】
本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.
4、八
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
【详解】
解:由题意得,n-2=6,
解得:n=8,
故答案为:八.
【点睛】
本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
5、34.5
【解析】
【分析】
根据余角定义解答.
【详解】
解:∵∠A=55°30′,
∴∠A的余角的度数为=34.5°,
故答案为:34.5.
【点睛】
此题考查了余角的定义:相加为90°的两个角互为余角,熟记余角定义是解题的关键.
三、解答题
1、 (1)a
(2)9cm
【解析】
【分析】
(1)首先求出CB的长;然后根据D为线段BC的中点,求出CD的长即可.
(2)首先根据AD=3cm表示出CD;然后得到方程,求出a的值即可.
(1)
解:∵AB=a,AC=AB=a,
∴CB=a+a=a,
∵D为线段BC的中点,
∴CD=CB=a;
(2)
∵AC=a,AD=3cm,
∴CD=a+3,
∴a+3=a,
解得:a=9.
【点睛】
此题主要考查了两点间的距离的求法,以及线段的中点的特征和应用,要熟练掌握.
2、 (1),
(2)①3;②2或6
【解析】
【分析】
(1)根据“点值”的定义即可得出答案;
(2)①设运动时间为t,再根据的值是个定值即可得出m的值;
②分点Q从点B向点A方向运动时和点Q从点A向点B方向运动时两种情况加以分析即可
(1)
解:∵,,
∴
∴,
∵,
∴
(2)
解:①设运动时间为t,则AP=t,AQ=10-3t,
则,
∵的值是个定值,
∴的值是个定值,
∴m=3
②当点Q从点B向点A方向运动时,
∵
∴
∴t=2
当点Q从点A向点B方向运动时,
∵
∴
∴t=6
∴t的值为2或6
【点睛】
本题考查了一元一次方程的应用,理解新定义,并能运用是本题的关键.
3、 (1)∠ACE=∠BCD,∠ACD=∠ECB
(2)30°
【解析】
【分析】
(1)根据余角的性质即可得到结论;
(2)根据角的和差即可得到结论.
(1)
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE=∠BCD+∠DCE=90°,
∴∠ACE=∠BCD;∠ACD=∠ECB=90°
(2)
∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°.
∴∠DCE=90°-∠ACE=90°-60°=30°
【点睛】
本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
4、 (1)
(2)3
(3) 或或
【解析】
【分析】
(1)利用非负数的性质可得: 再解方程可得答案;
(2)由新定义可得 从而可得答案;
(3)当运动时间为秒时,对应的数为 对应的数为 根据新定义分两种情况讨论:当时,则 当时,则 再解方程可得答案.
(1)
解:
解得:
故答案为:
(2)
解: 点C在线段AB上,且为[A,B]的“三倍距点”,
点对应的数为:
故答案为:3
(3)
解:当运动时间为秒时,对应的数为 对应的数为
当时,则
或
解得:,而无解,
当时,则 即
或
解得:或
【点睛】
本题考查的是数轴上的动点问题,平方与绝对值非负性的应用,绝对值方程的应用,一元一次方程的应用,线段的和差倍分关系,熟练的利用方程解决动点问题是解本题的关键.
5、 (1)
(2)①,理由见解析;②4秒或22秒
【解析】
【分析】
(1)利用角的和差关系求解 再利用角平分线的含义求解即可;
(2)①设,再利用角的和差关系依次求解, ,, 从而可得答案;②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.再分三种情况讨论:如图,当时 ,,如图,当时 ,,如图,当时,,,再利用互余列方程解方程即可.
(1)
解:
∵平分
∴
(2)
解:①设,则,
∴
∴,
∴
②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.
如图,当时 ,,
则,
∴
如图,当时 ,,
则,方程无解,不成立
如图,当时,,,
则,
∴
综上所述秒或22秒
【点睛】
本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练,共22页。试卷主要包含了能解释,已知与满足,下列式子表示的角,如图,D,下列说法正确的是等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀课后测评: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀课后测评,共20页。试卷主要包含了在数轴上,点M,下列说法中正确的是,上午10,如果A等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题,共24页。试卷主要包含了下列说法正确的是,如图所示,点E,已知点C,如图,D,如图,OM平分,,,则等内容,欢迎下载使用。