鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题
展开
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题,共25页。试卷主要包含了如图,一副三角板,如图,射线OA所表示的方向是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,D、E顺次为线段上的两点,,C为AD的中点,则下列选项正确的是( )A.若,则 B.若,则C.若,则 D.若,则2、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( ) A.3 B.4 C.6 D.83、如图,下列说法不正确的是( )A.直线m与直线n相交于点D B.点A在直线n上C.DA+DB<CA+CB D.直线m上共有两点4、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )A. B.C. D.5、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )A.5 B.6 C.7 D.86、如图所示,若,则射线OB表示的方向为( ).A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°7、如图,一副三角板(直角顶点重合)摆放在桌面上,若,则等于( )A. B. C. D.8、如图,射线OA所表示的方向是( )A.西偏南30° B.西偏南60° C.南偏西30° D.南偏西60°9、如图所示,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示10、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )A.两点确定一条直线 B.经过一点有无数条直线C.两点之间,线段最短 D.一条线段等于已知线段第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠α=,则∠α的余角的度数是_____.2、如图,将一块直角三角板的直角顶点放在直尺的一边上,如果,那么______.3、当时钟指向下午2:40时,时针与分针的夹角是_________度.4、式子的最小值是______.5、如图,点C是线段上任意一点(不与端点重合),点M是中点,点P是中点,点Q是中点,则下列说法:①;②;③;④.其中正确的是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知点A,B,C,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使;(要求保留作图痕迹)2、解答下列各题:(1)化简并求值:(a﹣ab)+(b+2ab)﹣(a+b),其中a=7,b=﹣.(2)如图,OD为∠AOB的平分线,∠AOC=2∠BOC,AO⊥CO,求∠COD的度数.3、如图(1),∠BOC和∠AOB都是锐角,射线OB在∠AOC内部,,.(本题所涉及的角都是小于180°的角)(1)如图(2),OM平分∠BOC,ON平分∠AOC,填空:①当,时,______,______,______;②______(用含有或的代数式表示).(2)如图(3),P为∠AOB内任意一点,直线PQ过点O,点Q在∠AOB外部:①当OM平分∠POB,ON平分∠POA,∠MON的度数为______;②当OM平分∠QOB,ON平分∠QOA,∠MON的度数为______;(∠MON的度数用含有或的代数式表示)(3)如图(4),当,时,射线OP从OC处以5°/分的速度绕点O开始逆时针旋转一周,同时射线OQ从OB处以相同的速度绕点O逆时针也旋转一周,OM平分∠POQ,ON平分∠POA,那么多少分钟时,∠MON的度数是40°?4、如图,是内的两条射线,平分,,若,,求的度数.5、在数轴上,点A表示的数为1,点B表示的数为3.对于数轴上的图形M,给出如下定义:P为图形M上任意一点,Q为线段AB上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M关于线段AB的极小距离,记作d1(M,线段AB);如果线段PQ的长度有最大值,那么称这个最大值为图形M关于线段AB的极大距离,记作d2(M,线段AB).例如:点K表示的数为4,则d1(点K,线段AB)=1,d2(点K,线段AB)=3.已知点O为数轴原点,点C,D为数轴上的动点.(1)d1(点O,线段AB)= ,d2(点O,线段AB)= ;(2)若点C,D表示的数分别为m,m+2,d1(线段CD,线段AB)=2.求m的值;(3)点C从原点出发,以每秒2个单位长度沿x轴正方向匀速运动;点D从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x轴正方向匀速运动,第2秒以每秒4个单位长度沿x轴负方向匀速运动,第3秒以每秒6个单位长度沿x轴正方向匀速运动,第4秒以每秒8个单位长度沿x轴负方向匀速运动,…,按此规律运动,C,D两点同时出发,设运动的时间为t秒,若d2(线段CD,线段AB)小于或等于6,直接写出t的取值范围.(t可以等于0) -参考答案-一、单选题1、D【解析】【分析】先利用中点的含义及线段的和差关系证明再逐一分析即可得到答案.【详解】解: C为AD的中点, ,则 故A不符合题意; ,则 同理: 故B不符合题意; ,则 同理: 故C不符合题意; ,则 同理: 故D符合题意;故选D【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明”是解本题的关键2、B【解析】【分析】根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.【详解】解:E、F分别是线段AC、AB的中点,AC=2AE=2CE,AB=2AF=2BF,EF=AE﹣AF=22AE﹣2AF=AC﹣AB=2EF=4,BC=AC﹣AB=4,故选:B.【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.3、D【解析】【分析】根据直线相交、点与直线、两点之间线段最短逐项判断即可得.【详解】解:A、直线与直线相交于点,则此项说法正确,不符合题意;B、点在直线上,则此项说法正确,不符合题意;C、由两点之间线段最短得:,则此项说法正确,不符合题意;D、直线上有无数个点,则此项说法不正确,符合题意;故选:D.【点睛】本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.4、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.5、C【解析】【分析】根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.【详解】解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,而题目中从一个顶点引出4条对角线,∴n-3=4,得到n=7,∴这个多边形的边数是7.故选:C.【点睛】本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.6、A【解析】【分析】根据同角的余角相等即可得,,根据方位角的表示方法即可求解.【详解】如图,即射线OB表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.7、A【解析】【分析】由三角板中直角三角尺的特征计算即可.【详解】∵和为直角三角尺∴,∴∴∴故选:A.【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.8、D【解析】【详解】解:,根据方位角的概念,射线表示的方向是南偏西60度.故选:D.【点睛】本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.9、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.【点睛】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.10、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.二、填空题1、【解析】【分析】根据90度减去即可求解.【详解】解:∠α=,则∠α的余角的度数是故答案为:【点睛】本题考查了角度的计算,求一个角的余角,掌握角度的计算是解题的关键.2、##25.2°【解析】【分析】,由可以求出的值.【详解】解:故答案为:(或).【点睛】本题考察了角度的转化.解题的关键在于明确.3、【解析】【分析】如图,钟面被等分成12份,每一份对应的角为先求解 根据时针每分钟转,再求解 从而可得答案.【详解】解:如图,时钟指向下午2:40时, 钟面被等分成12份,每一份对应的角为 时针每分钟转 故答案为:【点睛】本题考查的是钟面角的计算,角的和差关系,掌握“钟面被等分成12份,每一份对应的角为时针每分钟转”是解本题的关键.4、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P与点C不重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+PC;∵AE+BD+PC> AE+BD,∴当点P与点C重合时,点P到A、B、C、D、E各点的距离之和最小,令数轴上数x表示的为P,则表示点P到A、B、C、D、E各点的距离之和,∴当x=2时,取得最小值,∴的最小值==5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.5、①②④【解析】【分析】根据线段中点的定义得到,,,然后根据线段之间的和差倍分关系逐个求解即可.【详解】解:∵M是中点,∴,∵P是中点,∴,∵点Q是中点,∴,对于①:,故①正确;对于②:,,故②正确;对于③:,而,故③错误;对于④:,,故④正确;故答案为:①②④.【点睛】此题考查线段之间的和差倍分问题,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;(1)如图所示;(2)如图所示,或【点睛】本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.2、 (1)ab,-1(2)22.5°【解析】【分析】(1)首先化简(a-ab)+(b+2ab)-(a+b),然后把a=7,b=代入化简后的算式即可.(2)根据垂直的定义得到∠AOC=90°,求得∠AOB=∠AOC+∠BOC=135°,根据角平分线的定义求出∠BOD,再减去∠BOC可得结果.【小题1】解:(a-ab)+(b+2ab)-(a+b)=a-ab+b+2ab-a-b=ab当a=7,b=时,原式=7×()=-1.【小题2】∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°,∴∠COD=∠BOD-∠BOC=22.5°.【点睛】此题主要考查了整式的加减-化简求值问题,角度的计算,角平分线的定义,要熟练掌握,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.3、 (1)(2),(3)分钟时,∠MON的度数是40°【解析】【分析】(1)根据角平分线的定义判断即可;(2)①根据求解即可,②根据求解即可;(3)分在的外部和内部两种情况讨论,在外部时根据旋转的时间乘以速度等于,在内部时可以判断,,则此情况不存在(1)① OM平分∠BOC,ON平分∠AOC,当,时,,,②故答案为:(2)①OM平分∠POB,ON平分∠POA, ②OM平分∠QOB,ON平分∠QOA,故答案为:,(3)根据题意OM平分∠POQ,如图,当在的外部时, MON的度数是40° ON平分∠POA,则旋转了分即分钟时,∠MON的度数是40°如图,在的内部时,即此情况不存在综上所述,分钟时,∠MON的度数是40°【点睛】本题考查了几何图形中角度的计算,角平分线的意义,掌握角平分线的意义是解题的关键.4、80°【解析】【分析】设∠BOE为x°,则∠DOB=55°-x°,∠EOC=2x°,然后根据角平分线定义列方程解决求出∠BOE,可得∠EOC.【详解】解:设∠BOE=x°,则∠DOB=55°﹣x°, 由∠BOE=∠EOC可得∠EOC=2x°,由OD平分∠AOB,得∠AOB=2∠DOB,故有2x+x+2(55﹣x)=150,解方程得x=40,故∠EOC=2x=80°.【点睛】本题主要考查了角平分线的定义以及角的计算,根据角平分线的性质和已知条件列方程求解.方程思想是解决问题的基本思考方法.5、 (1)1,3(2)﹣3或5(3)或【解析】【分析】(1)根据定义即可求得答案;(2)由题意易得CD=2,然后分两种情况讨论m的值,即当CD在AB的左侧时和当CD在AB的右侧时;(3)由题意可分当t=0时,点C表示的数为0,点D表示的数为﹣2,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,当t=5时,点C表示的数为10,点D表示的数为4,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,进而问题可求解.(1)解:d1(点O,线段AB)=OA=1﹣0=1,d2(点O,线段AB)=OB=3﹣0=3,故答案为:1,3;(2)解:∵点C,D表示的数分别为m,m+2,∴点D在点C的右侧,CD=2,当CD在AB的左侧时,d1(线段CD,线段AB)=DA=1﹣(m+2)=2,解得:m=﹣3,当CD在AB的右侧时,d1(线段CD,线段AB)=BC=m﹣3=2,解得:m=5,综上所述,m的值为﹣3或5;(3)解:当t=0时,点C表示的数为0,点D表示的数为﹣2,则d2=5,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,则d2=5﹣2t<6,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,则d2=4t﹣1≤6,解得:t≤,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,则d2=19﹣6t≤6,解得:t≥,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,则d2=8t﹣23≤6或2t﹣1≤6,解得:t≤,当t=5时,点C表示的数为10,点D表示的数为4,则d2=AC=10﹣1=9>6,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,(﹣6<10t﹣46≤4),∴0≤BD≤9,7≤AC≤9,∴d2>6,不符合题意,综上所述,d2(线段CD,线段AB)小于或等于6时,0≤t≤或≤t≤.【点睛】本题考查了学生对新定义的理解及分类讨论的应用,正确理解定义及准确的分类是解决本题的关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共25页。试卷主要包含了在一幅七巧板中,有我们学过的,下列说法中正确的是,下列四个说法等内容,欢迎下载使用。
这是一份数学六年级下册第五章 基本平面图形综合与测试课后练习题,共24页。试卷主要包含了能解释,如图所示,点E,已知与满足,下列式子表示的角,如图,下列说法不正确的是等内容,欢迎下载使用。
这是一份鲁教版 (五四制)第五章 基本平面图形综合与测试课后练习题,共25页。试卷主要包含了在下列生活,若,则的补角的度数为等内容,欢迎下载使用。