2020-2021学年第五章 基本平面图形综合与测试一课一练
展开
这是一份2020-2021学年第五章 基本平面图形综合与测试一课一练,共24页。试卷主要包含了下列说法正确的是,在下列生活,如图,下列说法不正确的是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )A. B. C. D.2、下列说法正确的是( )A.锐角的补角不一定是钝角 B.一个角的补角一定大于这个角C.直角和它的的补角相等 D.锐角和钝角互补3、如图,点O在CD上,OC平分∠AOB,若∠BOD=153°,则∠DOE的度数是( )A.27° B.33° C.28° D.63°4、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )A.两点确定一条直线 B.两点之间线段最短C.线段有两个端点 D.射线只有一个端点5、下列说法正确的是( )A.正数与负数互为相反数 B.如果x2=y2,那么x=yC.过两点有且只有一条直线 D.射线比直线小一半6、若一个角为45°,则它的补角的度数为( )A.55° B.45° C.135° D.125°7、在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( )①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①② B.①④ C.②③ D.③④8、如图,下列说法不正确的是( )A.直线m与直线n相交于点D B.点A在直线n上C.DA+DB<CA+CB D.直线m上共有两点9、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )A.直线外一点与直线上点之间的连线段有无数条 B.过一点有无数条直线C.两点确定一条直线 D.两点之间线段最短10、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A地到B地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )A.①② B.①③ C.②④ D.③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.2、若一个角度数是115°6′,则这个角的补角是___________.3、南偏西25°:_________北偏西70°:_________南偏东60°:_________4、的余角等于__________.5、如图,B是线段AD上一点,C是线段BD的中点,AD=10,BC=3.则线段AB的长等于________.三、解答题(5小题,每小题10分,共计50分)1、如图,直线、相交于点,,.(1)若,则 __________.(2)从(1)的时刻开始,若将绕以每秒15的速度逆时针旋转一周,求运动多少秒时,直线平分.(3)从(1)的时刻开始,若将绕点逆时针旋转一周,如果射线是的角平分线,请直接写出此过程中与的数量关系.(不考虑与、重合的情况)2、如图,已知线段a,b.(尺规作图,保留作图痕迹,不写作法)求作:线段.3、已知∠AOB=120°,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.(1)若OC平分∠AOB,①依题意补全图1;②∠MON的度数为 .(2)当射线OC绕点O在∠AOB的内部旋转时,∠MON的度数是否改变?若不变,求∠MON的度数;若改变,说明理由.4、已知,,,分别平分,.(1)如图1,当,重合时, 度;(2)若将的从图1的位置绕点顺时针旋转,旋转角,满足且.①如图2,用等式表示与之间的数量关系,并说明理由;②在旋转过程中,请用等式表示与之间的数量关系,并直接写出答案.5、如图,是直线上一点,是直角,平分.(1)若,则__________;(2)若,求__________(用含的式子表示);(3)在的内部有一条射线,满足,试确定与的度数之间的关系,并说明理由. -参考答案-一、单选题1、B【解析】【分析】根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.【详解】解:∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG-∠CBG=60°-45°=15°.故选B.【点睛】此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.2、C【解析】【分析】根据余角和补角的概念判断即可.【详解】解:A、因为锐角的补角与锐角之和为180°,所以锐角的补角一定是钝角,所以本说法不符合题意;B、当这个角为120°时,120°的补角是60°,所以本说法不符合题意;C、根据直角的补角是直角.所以本说法符合题意;D、锐角和钝角的度数不确定,不能确定锐角和钝角是否互补,所以本说法不符合题意;故选:C.【点睛】本题考查的是余角和补角的概,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.3、D【解析】【分析】先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.【详解】解:∵∠BOD=153°,∴∠BOC=180°-153°=27°,∵CD为∠AOB的角平分线,∴∠AOC=∠BOC=27°,∵∠AOE=90°,∴∠DOE=90°-∠AOC=63°故选:D.【点睛】本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.4、A【解析】【分析】根据经过两点有一条直线,并且只有一条直线即可得出结论.【详解】解:∵让男生站成一条直线,他先让前两个男生站好不动,∴经过两点有一条直线,并且只有一条直线,∴这种做法的数学依据是两点确定一条直线.故选A.【点睛】本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.5、C【解析】【分析】A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.【详解】解:A中正数负数分别为,,错误,不符合要求;B中,可得或,错误,不符合要求;C中过两点有且只有一条直线 ,正确,符合要求;D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;故选C.【点睛】本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.6、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵一个角为45°,∴它的补角的度数为 .故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.7、B【解析】【分析】直接利用直线的性质以及线段的性质分析求解即可.【详解】①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;综上可得:①④可以用“两点确定一条直线”来解释,故选:B.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.8、D【解析】【分析】根据直线相交、点与直线、两点之间线段最短逐项判断即可得.【详解】解:A、直线与直线相交于点,则此项说法正确,不符合题意;B、点在直线上,则此项说法正确,不符合题意;C、由两点之间线段最短得:,则此项说法正确,不符合题意;D、直线上有无数个点,则此项说法不正确,符合题意;故选:D.【点睛】本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.9、D【解析】【分析】根据题意可知,原因为两点之间线段最短,据此分析即可【详解】解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短故选D【点睛】本题考查了线段的性质,掌握两点之间线段最短是解题的关键.10、D【解析】【分析】分别利用直线的性质以及线段的性质分析得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;故选:D.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.二、填空题1、 2 两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,故答案为:2,两点确定一条直线.【点睛】此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.2、64°54'【解析】【分析】根据补角的定义(若两个角之和为,则这两个角互为补角)进行求解即可得.【详解】解:,故答案为:.【点睛】题目主要考查补角的定义,理解补角的定义是解题关键.3、 射线OA 射线OB 射线OC【解析】略4、【解析】【分析】根据和为90°的两个角互为余角解答即可.【详解】解:的余角等于90°-=,故答案为:.【点睛】本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.5、4【解析】【分析】首先根据C是线段BD的中点,可得:CD=BC=3,然后用AD的长度减去BC、CD的长度,求出AB的长度是多少即可.【详解】解:∵C是线段BD的中点,BC=3,∴CD=BC=3;∵AB+BC+CD=AD,AD=10,∴AB=10-3-3=4.故答案为:4.【点睛】本题主要考查了两点间的距离.解题的关键是熟练掌握两点间的距离的求法,以及线段的中点的定义.三、解答题1、 (1)30°(2)11或23秒(3)或【解析】【分析】(1)根据,,利用余角性质得出∠EOB=90°-∠COE=90°-30°=60°,根据,利用余角性质得出∠BOF=90°-∠EOB=90°-60°=30°即可;(2)解分两种情形,平分,得出,,设运动秒时 根据运动转过的角度列方程,平分,,根据运动转过的角度列方程,解方程即可;(3)分四种情况OE在∠COB内,OE在∠AOC内,OE在∠AOD内,OE在∠DOB内,根据射线是的角平分线∠COP=∠EOP,利用角的和差计算即可.(1)解:∵,,∴∠EOB=90°-∠COE=90°-30°=60°,∵,∴∠BOF=90°-∠EOB=90°-60°=30°,故答案是:30°;(2)解分两种情形,情况一∵平分,∴,∴,设运动秒时,平分,根据题意得:,解得:;情况二∵平分,∴,设运动秒时,平分,根据题意得:,解得:;综上:运动11或23秒时,直线平分;(3)解:∵射线是的角平分线∴∠COP=∠EOP,∠AOC=∠EOF=90°,∴∠AOP=90°+∠COP=90°+∠POE,∵∠COE=∠BOF,∴∠POE=,∴,∵∠COE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠COF=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠BOE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°+∠COP=90°+,∴;综上:或.【点睛】本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.2、见解析【解析】【分析】作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.【详解】解:如图,线段AB即为所求作的线段.【点睛】本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.3、 (1)①见解析;②80°(2)∠MON的度数不变,80°【解析】【分析】(1)①根据题意补全图;②根据,∠MOC=∠AOC﹣∠AOM=40°,得出∠MON的度数;(2)由OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线,得出∠MON=∠AOB﹣(∠AOM+∠BON)=AOB,从而得出答案.(1)解:①依题意补全图如下: ②∵OC平分∠AOB,∠AOB=120°,∴,∵射线OM是∠AOC靠近OA的三等分线,∴,∴∠MOC=∠AOC﹣∠AOM=40°,同理可得∠CON=40°,∴∠MON=∠CON+∠MOC=80°;(2)解:∠MON的度数不变.∵OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线,∵,,∴∠MON=∠AOB﹣(∠AOM+∠BON)=∠AOB﹣=,∵∠AOB=120°,∴∠MON=80°.【点睛】本题考查了角的计算和角的三等分线,掌握各个角之间的关系是解题的关键.4、 (1)(2)①;②时,;时,【解析】【分析】(1)由题意得出,,由角平分线定义得出,,即可得出答案;(2)①由角平分线定义得出,,求出,即可得出答案;②由①得,,当时,求出,,即可得出答案;当时,求出,,即可得出答案.(1),重合,,,平分,平分,,,;(2)①;理由如下:平分,平分,,,,;②由①得:,,当时,如图2所示:,,,∴当时,如图3所示:,,;∴综上所述,时,;时,【点睛】本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键.5、 (1)30°(2)(3)5∠DOE-7∠AOF=270°【解析】【分析】(1)先根据∠DOB与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE;(2)先根据∠AOC与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE,再根据∠DOE与∠COE的互余关系即可得出答案;(3)结合(2)把所给等式整理为只含所求角的关系式即可.(1)解:∵∠COD是直角,∠BOD=30°,∴∠BOC=90°-∠BOD=60°,∵OE平分∠BOC,∴∠COE=30°,(2)∵,∴,∵OE平分∠BOC,∴∠COE=∠BOE,∵∠COD是直角,∴∠DOE=90°-∠COE=,(3)∵∴6∠AOF+3∠BOE=∠AOC-∠AOF,∴7∠AOF+3∠BOE=∠AOC,∵∠COD是直角,OE平分∠BOC,∴∠BOE=90°-∠DOE,由(2)可知,∠AOC=2∠DOE∴7∠AOF+3(90°-∠DOE)=2∠DOE∴7∠AOF+270°=5∠DOE,∴5∠DOE-7∠AOF=270°.【点睛】本题考查角的计算;根据所求角的组成进行分析是解决本题的关键;应用相应的桥梁进行求解是常用的解题方法;注意应用题中已求得的条件.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习,共23页。试卷主要包含了已知线段AB,若的补角是,则的余角是,下列四个说法等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习,共24页。试卷主要包含了下列两个生活,下列各角中,为锐角的是,如图所示,点E等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试巩固练习,共23页。试卷主要包含了如图,一副三角板,如图所示,由A到B有①等内容,欢迎下载使用。