鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题
展开六年级数学下册第五章基本平面图形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.正数与负数互为相反数 B.如果x2=y2,那么x=y
C.过两点有且只有一条直线 D.射线比直线小一半
2、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )
A.2 B.2.5 C.3 D.3.5
3、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )
A.两点确定一条直线 B.两点之间线段最短
C.线段有两个端点 D.射线只有一个端点
4、如图,C为线段上一点,点D为的中点,且,.则的长为( ).
A.18 B.18.5 C.20 D.20.5
5、如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )
A.北偏西55° B.北偏东65° C.北偏东35° D.北偏西35°
6、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )
A. B.
C.或 D.或
7、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
8、若的补角是,则的余角是( )
A. B. C. D.
9、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
10、①直线AB和直线BA是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有( )
A.②③④ B.①②④ C.③④ D.①
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若∠A=,则∠A的补角为__________.
2、一个角为,则它的余角度数为 _____.
3、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=__________时,AB所在直线与CD所在直线互相垂直.
4、如图,B是线段AD上一点,C是线段BD的中点,AD=10,BC=3.则线段AB的长等于________.
5、如图,已知线段AB=8cm,点C是线段AB靠近点A的四等分点,点D是BC的中点,则线段CD=_____cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图(1),直线、相交于点,直角三角板边落在射线上,将三角板绕点逆时针旋转180°.
(1)如图(2),设,当平分时,求(用表示)
(2)若,
①如图(3),将三角板旋转,使落在内部,试确定与的数量关系,并说明理由.
②若三角板从初始位置开始,每秒旋转5°,旋转时间为,当与互余时,求的值.
2、如图,将两块三角板的直角顶点重合.
(1)写出以C为顶点相等的角;
(2)若∠ACB=150°,求∠DCE的度数.
3、如图①,将一副常规直角三角尺的直角顶点叠放在一起,,.解答下列问题.
(1)若∠DCE=35°24',则∠ACB= ;若∠ACB=115°,则∠DCE= ;
(2)当∠DCE=α时,求∠ACB的度数,并直接写出∠DCE与∠ACB的关系;
(3)在图①的基础上作射线BC,射线EC,射线DC,如图②,则与∠ECB互补的角有 个.
4、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)
(1)若,当点运动了,求的值;
(2)若点运动时,总有,试说明;
(3)如图2,已知,是线段所在直线上一点,且,求的值.
5、已知∠AOD=160°,OB为∠AOD内部的一条射线.
(1)如图1,若OM平分∠AOB,ON平分∠BOD,求∠MON的度数为 ;
(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;
(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.
【详解】
解:A中正数负数分别为,,错误,不符合要求;
B中,可得或,错误,不符合要求;
C中过两点有且只有一条直线 ,正确,符合要求;
D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;
故选C.
【点睛】
本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.
2、C
【解析】
【分析】
由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.
【详解】
解:∵,,
∴BC=12,
∴AC=AB+BC=18,
∵D是AC的中点,
∴,
∴BD=AD-AB=9-6=3,
故选:C.
【点睛】
此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.
3、A
【解析】
【分析】
根据经过两点有一条直线,并且只有一条直线即可得出结论.
【详解】
解:∵让男生站成一条直线,他先让前两个男生站好不动,
∴经过两点有一条直线,并且只有一条直线,
∴这种做法的数学依据是两点确定一条直线.
故选A.
【点睛】
本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.
4、C
【解析】
【分析】
根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.
【详解】
解:由点D为BC的中点,得
BC=2CD=2BD,
由线段的和差,得
AB=AC+BC,即4CD+2CD=30,
解得CD=5,
AC=4CD=4×5=20cm,
故选:C;
【点睛】
本题考查了两点间的距离,利用了线段中点的性质,线段的和差.
5、D
【解析】
【分析】
如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,
即可得到答案.
【详解】
解:假设两船相撞,如同所示,
根据两船的速度相同可得AC=BC,
∴∠CBA=∠CAB=90°-35°=55°,
∴乙的航向不能是北偏西35°,
故选:D.
【点睛】
此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.
6、D
【解析】
【分析】
分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.
【详解】
解:当OC在∠AOB内部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=∠BOC;
当OC在∠AOB外部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=3∠BOC;
综上,∠AOC=∠BOC或∠AOC=3∠BOC;
故选:D.
【点睛】
本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.
7、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
8、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
9、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
10、B
【解析】
【分析】
根据直线的表示方法,平角,补角,线段的性质逐个判断即可.
【详解】
①直线AB和直线BA是同一条直线,正确
②平角等于180°,正确
③一个角是70°39',它的补角应为:,所以错误
④两点之间线段最短,正确
故选B
【点睛】
本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.
二、填空题
1、127°30′18″
【解析】
【分析】
根据补角的定义,用180°减去的度数即可求解.
【详解】
的补角等于:.
故答案是:.
【点睛】
考查了补角的定义,掌握两个角互为补角,就是两个角的和是180°是解答本题的关键.
2、
【解析】
【分析】
根据余角的定义计算即可.
【详解】
解:90°-,=,
故答案为:.
【点睛】
本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.
3、105°或75°
【解析】
【分析】
分两种情况:①AB⊥CD,交DC延长线于E,OB交DC延长线于F,②AB⊥CD于G,OA交DC于H求出答案.
【详解】
解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,
∵∠B=45°,∠BEF=90°,
∴∠CFO=∠BFE=45°,
∵∠DCO=60°,
∴∠COF=15°
∴∠AOC=90°+15°=105°;
②如图2,AB⊥CD于G,OA交DC于H,
∵∠A=45°,∠AGH=90°,
∴∠CHO=∠AHG=45°,
∵∠DCO=60°,
∴∠AOC=180°-60°-45°=75°;
故答案为:105°或75°.
【点睛】
此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.
4、4
【解析】
【分析】
首先根据C是线段BD的中点,可得:CD=BC=3,然后用AD的长度减去BC、CD的长度,求出AB的长度是多少即可.
【详解】
解:∵C是线段BD的中点,BC=3,
∴CD=BC=3;
∵AB+BC+CD=AD,AD=10,
∴AB=10-3-3=4.
故答案为:4.
【点睛】
本题主要考查了两点间的距离.解题的关键是熟练掌握两点间的距离的求法,以及线段的中点的定义.
5、3
【解析】
【分析】
先根据四等分点的定义可得的长,根据线段的差可得的长,最后根据线段中点的定义可得结论.
【详解】
解:,点是线段靠近点的四等分点,
,
,
点是线段的中点,
.
故答案为:3.
【点睛】
本题考查了两点间的距离,线段的中点以及线段的四等分点的概念,解题的关键是正确得出.
三、解答题
1、 (1)
(2)①,理由见解析;②4秒或22秒
【解析】
【分析】
(1)利用角的和差关系求解 再利用角平分线的含义求解即可;
(2)①设,再利用角的和差关系依次求解, ,, 从而可得答案;②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.再分三种情况讨论:如图,当时 ,,如图,当时 ,,如图,当时,,,再利用互余列方程解方程即可.
(1)
解:
∵平分
∴
(2)
解:①设,则,
∴
∴,
∴
②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.
如图,当时 ,,
则,
∴
如图,当时 ,,
则,方程无解,不成立
如图,当时,,,
则,
∴
综上所述秒或22秒
【点睛】
本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键.
2、 (1)∠ACE=∠BCD,∠ACD=∠ECB
(2)30°
【解析】
【分析】
(1)根据余角的性质即可得到结论;
(2)根据角的和差即可得到结论.
(1)
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE=∠BCD+∠DCE=90°,
∴∠ACE=∠BCD;∠ACD=∠ECB=90°
(2)
∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°.
∴∠DCE=90°-∠ACE=90°-60°=30°
【点睛】
本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
3、 (1);
(2),与互为补角
(3)5
【解析】
【分析】
(1)根据三角板中的特殊角,以及互余的意义可求答案;
(2)方法同(1)即可得出结论;
(3)利用直角的意义,互补的定义可得出结论.
(1)
解:,
,
;
,,
,
,
故答案为:;;
(2)
解:,
,
;
,即与互补;
(3)
解:由图可知,
,
与互补的角有5个;
故答案为:5.
【点睛】
本题考查三角板的特殊内角,补角的定义及余角的定义,解题的关键是掌握互余和互补的定义和三角板的内角度数.
4、 (1)2cm
(2)见解析
(3)或
【解析】
【分析】
(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;
(2)根据题意可得出,.再由,可求出,从而可求出,即证明;
(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.
(1)
∵时间时,
,,
∴
;
(2)
∵,,
又∵,
∴,
∴,
∴,
∴;
(3)
①如图,当点在线段上时,
∵,
∴,
∴,
∴;
②如图,当点在线段的延长线上时,
∵,
∴,
∴,
③如图,当点在线段的延长线上时,
,这种情况不可能,
综上可知,的值为或.
【点睛】
本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.
5、 (1)80°;
(2)70°
(3)42°或58°.
【解析】
【分析】
(1)根据角平分线的性质证得∠BOM=∠AOB,∠BON=∠BOD,即可得到答案;
(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分∠BOD,求出∠BOG=∠BOD=70°−x,即可求出∠FOG的度数;
(3)分两种情况:①当OF在OB右侧时,由∠BOC=20°,∠BOF=8°,求得∠COF的度数,利用OF平分∠AOC,得到∠AOC的度数,得到∠BOD的度数,根据OG平分∠BOD,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.
(1)
解:∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=∠AOB,∠BON=∠BOD,
∴∠MON=∠BOM+∠BON=∠AOB+∠BOD=∠AOD=80°;
故答案为:80°;
(2)
解:设∠BOF=x,
∵∠BOC=20°,
∴∠COF=20°+x,
∵OF平分∠AOC,
∴∠AOC=2∠COF=40°+2x,
∴∠COD=∠AOD-∠AOC=140°-2x,
∵OG平分∠BOD,
∴∠BOG=∠BOD=70°−x,
∴∠FOG=∠BOG+∠BOF=70°−x+x=70°;
(3)
解:当OF在OB右侧时,如图,
∵∠BOC=20°,∠BOF=8°,
∴∠COF=28°,
∵OF平分∠AOC,
∴∠AOC=2∠COF=56°,
∴∠COD=∠AOD-∠AOC=104°,
∴∠BOD=124°,
∵OG平分∠BOD,
∴∠BOG=∠BOD=62°,
∴∠GOC=∠BOG−∠BOC=62°−20°=42°.
当OF在OB左侧时,如图,
∵∠BOC=20°,∠BOF=8°,
∴∠COF=12°,
∵OF平分∠AOC,
∴∠AOC=2∠COF=24°,
∴∠COD=∠AOD-∠AOC=136°,
∴∠BOD=156°,
∵OG平分∠BOD,
∴∠BOG=∠BOD=78°,
∴∠GOC=∠BOG−∠BOC=78°−20°=58°.
∴∠GOC的度数为42°或58°.
【点睛】
此题考查了几何图形中角度的计算,角平分线的有关计算,正确掌握角平分线的定义及图形中各角度之间的位置关系进行计算是解题的关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共21页。试卷主要包含了已知线段AB,已知,则∠A的补角等于,在数轴上,点M,如图,射线OA所表示的方向是,已知,则的补角等于等内容,欢迎下载使用。
数学六年级下册第五章 基本平面图形综合与测试课后练习题: 这是一份数学六年级下册第五章 基本平面图形综合与测试课后练习题,共24页。试卷主要包含了能解释,如图所示,点E,已知与满足,下列式子表示的角,如图,下列说法不正确的是等内容,欢迎下载使用。
初中数学第五章 基本平面图形综合与测试同步测试题: 这是一份初中数学第五章 基本平面图形综合与测试同步测试题,共25页。试卷主要包含了在一幅七巧板中,有我们学过的等内容,欢迎下载使用。