![2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形专题测评试卷(精选)01](http://img-preview.51jiaoxi.com/2/3/12734080/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形专题测评试卷(精选)02](http://img-preview.51jiaoxi.com/2/3/12734080/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形专题测评试卷(精选)03](http://img-preview.51jiaoxi.com/2/3/12734080/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试达标测试
展开六年级数学下册第五章基本平面图形专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、①线段,AB的中点为D,则;②射线;③OB是的平分线,,则;④把一个周角6等分,每份是60°.以上结论正确的有( )
A.②③ B.①④ C.①③④ D.①②③
2、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是( )
A.过一点有无数条直线 B.两点确定一条直线
C.两点之间线段最短 D.线段是直线的一部分
3、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
4、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′ B.144°81′ C.54°41′ D.54°81′
5、钟表上1时30分时,时针与分针所成的角是( )
A. B. C. D.以上答案都不对
6、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
7、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A.两点之间,线段最短 B.两点确定一条直线
C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离
8、若,则的补角的度数为( )
A. B. C. D.
9、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
10、能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( )
A.垂线段最短 B.两点确定一条直线
C.两点之间线段最短 D.同角的补角相等
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、式子的最小值是______.
2、如图所示的网格是正方形网格,∠BAC_____∠DAE.(填“>”,“=”或“<”)
3、已知点C在线段AB上,点D、E分别是AC和BC的中点,若,则______cm.
4、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
5、点A,B,C在同一条直线上,,.则____________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线、相交于点,,.
(1)若,则 __________.
(2)从(1)的时刻开始,若将绕以每秒15的速度逆时针旋转一周,求运动多少秒时,直线平分.
(3)从(1)的时刻开始,若将绕点逆时针旋转一周,如果射线是的角平分线,请直接写出此过程中与的数量关系.(不考虑与、重合的情况)
2、点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:
(1)当a=﹣1,b=5时,求线段AB的“和谐点”所表示的数;
(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.
3、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.
(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m.
(2)燕化附中在燕山向阳小学的 方向.
(3)小辰从燕山向阳小学出发,沿正东方向走200m,右转进入岗南路,沿岗南路向南走150m,左转进入迎风南路,沿迎风南路向正东方向走450m到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.
4、如图,,是的平分线,是的平分线.
(1)若,求的度数;
(2)若与互补,求的度数.
5、如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.
(1)画射线;
(2)画直线;
(3)在直线上找一点P,使得最小.
-参考答案-
一、单选题
1、B
【解析】
【分析】
分别根据中点的定义,射线的性质,角平分线的定义,周角的定义逐项判断即可求解.
【详解】
解:①线段,AB的中点为D,则,故原判断正确;
②射线没有长度,故原判断错误;
③OB是的平分线,,则,故原判断错误;
④把一个周角6等分,每份是60°,故原判断正确.
故选:B
【点睛】
本题考查了中点的定义,射线的理解,角平分线的性质,周角的定义等知识,熟知相关知识是解题关键.
2、B
【解析】
【分析】
根据“经过两点有且只有一条直线”即可得出结论.
【详解】
解:∵经过两点有且只有一条直线,
∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.
∴能解释这一实际应用的数学知识是两点确定一条直线.
故选:B.
【点睛】
本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.
3、A
【解析】
【分析】
根据直线、线段、射线的区别逐项分析判断即可
【详解】
解:①图中只有直线BD,1条直线,原说法错误;
②图中共有2×3+1×2=8条射线,原说法错误;
③图中共有6条线段,即线段,原说法是正确的;
④图中射线BC与射线CD不是同一条射线,原说法错误.
故正确的有③,共计1个
故选:A.
【点睛】
本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.
4、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
5、C
【解析】
【分析】
钟表上12个大格把一个周角12等分,每个大格30°,1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.
【详解】
解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4格半,
钟表12个数字,每相邻两个数字之间的夹角为30°,
∴1点30分分针与时针的夹角是4.5×30°=135°.
故选:C.
【点睛】
本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.
6、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
7、A
【解析】
【分析】
根据两点之间线段最短的性质解答.
【详解】
解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选:A.
【点睛】
此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.
8、C
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵,
∴的补角的度数为.
故选:C
【点睛】
本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.
9、B
【解析】
【分析】
先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.
【详解】
解:根据题意,画出图形,如图所示:
设 ,则 ,
∵点D是线段AC的中点,
∴ ,
∴ ,
∴AB=BD,即点B是线段AD的中点,故①正确;
∴BD=CD,故②正确;
∴AB=CD,故③错误;
∴ ,
∴BC﹣AD=AB,故④正确;
∴正确的有①②④.
故选:B
【点睛】
本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.
10、B
【解析】
【分析】
根据两点确定一条直线解答即可.
【详解】
解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,
故选B.
【点睛】
本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键.
二、填空题
1、16
【解析】
【分析】
画出数轴,根据两点间的距离公式解答.
【详解】
解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:
PA+PB+PC+PD+PE
=(PA+PE)+(PB+PD)+PC
=AE+BD+0
=AE+BD;
如图2,当点P与点C不重合时,点P到A、B、C、D、E各点的距离之和为:
PA+PB+PC+PD+PE
=(PA+PE)+(PB+PD)+PC
=AE+BD+PC;
∵AE+BD+PC> AE+BD,
∴当点P与点C重合时,点P到A、B、C、D、E各点的距离之和最小,
令数轴上数x表示的为P,则表示点P到A、B、C、D、E各点的距离之和,
∴当x=2时,取得最小值,
∴的最小值
=
=5+3+0+3+5
=16,
故答案为:16.
【点睛】
本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.
2、<
【解析】
【分析】
在Rt△ABC中,可知∠BAC的度数小于45°,在Rt△ADE中,可知∠DAE=45°,进而判断出∠BAC与∠DAE的大小.
【详解】
解:由图可知,在Rt△ABC中,BA=3BC,
∴∠BAC的度数小于45°,
在Rt△ADE中,可知DA=DE,
∴∠DAE=45°,
∴∠BAC<∠DAE,
故答案为:<.
【点睛】
本题考查角的大小比较,解题的关键是根据网格图得到两个直角三角形边的关系即可.
3、20
【解析】
【分析】
根据中点定义,DE=DC+CE=AC+BC=AB,即可求出AB的长;
【详解】
解:如图所示:
∵D、E分别是AC和BC的中点
∴DE=DC+CE=AC+BC=AB
又∵DE=10cm
∴AB=20cm
故答案为:20.
【点睛】
考查了线段的长度计算问题,解题关键是把握中点的定义,灵活运用线段的和、差、倍、分进行计算.
4、八
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
【详解】
解:由题意得,n-2=6,
解得:n=8,
故答案为:八.
【点睛】
本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
5、4cm或2cm##2cm或4cm
【解析】
【分析】
考虑到A、B、C三点之间的位置关系不确定,需要分成三种情况进行讨论:①当点C在线段AB上时;②当点C在线段AB的延长线上时;③当点C在线段BA的延长线上时;根据题意画出的图形进行解答即可.
【详解】
解:①当点C在线段AB上时,如图所示:,
又∵,,
∴;
②当点C在线段AB的延长线上时,如图所示:,
又∵,,
∴.
③当点C在线段BA的延长线上时,
∵,,
∴这种情况不成立,舍去;
∴线段或.
故答案为:或.
【点睛】
本题考查了线段间的和差及分类讨论思想,理解题意,作出相应图形进行求解是解题关键.
三、解答题
1、 (1)30°
(2)11或23秒
(3)或
【解析】
【分析】
(1)根据,,利用余角性质得出∠EOB=90°-∠COE=90°-30°=60°,根据,利用余角性质得出∠BOF=90°-∠EOB=90°-60°=30°即可;
(2)解分两种情形,平分,得出,,设运动秒时 根据运动转过的角度列方程,平分,,根据运动转过的角度列方程,解方程即可;
(3)分四种情况OE在∠COB内,OE在∠AOC内,OE在∠AOD内,OE在∠DOB内,根据射线是的角平分线∠COP=∠EOP,利用角的和差计算即可.
(1)
解:∵,,
∴∠EOB=90°-∠COE=90°-30°=60°,
∵,
∴∠BOF=90°-∠EOB=90°-60°=30°,
故答案是:30°;
(2)
解分两种情形,
情况一
∵平分,
∴,
∴,
设运动秒时,平分,
根据题意得:,
解得:;
情况二
∵平分,
∴,
设运动秒时,平分,
根据题意得:,
解得:;
综上:运动11或23秒时,直线平分;
(3)
解:∵射线是的角平分线
∴∠COP=∠EOP,∠AOC=∠EOF=90°,
∴∠AOP=90°+∠COP=90°+∠POE,
∵∠COE=∠BOF,
∴∠POE=,
∴,
∵∠COE=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°-∠COP=90°-,
∴,
∵∠COE=90°+∠COF=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°-∠COP=90°-,
∴,
∵∠COE=90°+∠BOE=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°+∠COP=90°+,
∴;
综上:或.
【点睛】
本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.
2、 (1)3或11;
(2)a的值为-12,-9,-4,-3.
【解析】
【分析】
(1):设线段AB的“和谐点”表示的数为x,根据a=﹣1,b=5,分三种情况,①当时,
列出方程.②当时,列出方程.③当时,列出方程解方程即可.
(2):点O为AB的“和谐点”OA=2OB,列方程或,根据b=a+6且a<0,可得或解方程,当A为OB的“和谐点”当b<0时,AB=2AO,即6=-a,不合题意,当b>0时,AO=2AB,a=12>0,不合题意,当点B为AO的“和谐点”BA=2BO,点B在点O的左边,6=2(-a-6),点B在点O的右边,6=2(a+6),解方程即可.
(1)
解:设线段AB的“和谐点”表示的数为x,
①当时,
列出方程.
解得.(舍去)
②当时,
列出方程.
解得.
③当时,
列出方程
解得.
综上所述,线段AB的“和谐点”表示的数为3或11.
(2)
解:点O为AB的“和谐点”OA=2OB,
或,
∵b=a+6且a<0,
,
解得,
,
解得,
当A为OB的“和谐点”,
当b<0时,a<-6,AB=2AO,即6=-a,
解得a=-6,不合题意,
当b>0时,AO=2AB,即a=2×(b-a),
∵b=a+6,
解得a=12>0,不合题意,
当点B为AO的“和谐点”BA=2BO,
点B在点O的左边,6=2(-a-6),
解得:a=-9,
点B在点O的右边,6=2(a+6),
解得:a=-3,
综合a的值为-12,-9,-4,-3.
【点睛】
本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.
3、 (1)正西,100
(2)南偏东77°
(3)见解析
【解析】
【分析】
(1)根据图中位置解决问题即可.
(2)根据图中位置解决问题即可.
(3)根据题意画出路线即可.
(1)
燕山前进二小在燕山前进中学的正西方向,距离大约是.
故答案为:正西,100.
(2)
燕化附中在燕山向阳小学的南偏东方向
故答案为:南偏东.
(3)
小辰行走的路线如图:
【点睛】
本题考查作图应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.
4、 (1)50°
(2)60°
5、 (1)画图见解析;
(2)画图见解析;
(3)画图见解析.
【解析】
【分析】
(1)根据射线的定义连接BA并延长即可求解;
(2)根据直线的定义连接AC并向两端延长即可求解;
(3)连接AC和BD,根据两点之间线段最短可得AC与BD的交点即为点P.
(1)
解:如图所示,连接BA并延长即为要求作的射线BA,
(2)
解:连接AC并向两端延长即为要求作的直线AC,
(3)
解:如图所示,连接AC和BD,
∵两点之间线段最短,
∴当点P,B,D在一条直线上时,最小,
∴线段AC与BD的交点即为要求作的点P.
【点睛】
本题主要是考查了几何作图能力以及两点之间线段最短和直线的概念,熟练掌握画图技巧,是解决作图题的关键.
六年级下册第五章 基本平面图形综合与测试当堂达标检测题: 这是一份六年级下册第五章 基本平面图形综合与测试当堂达标检测题,共23页。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题,共21页。试卷主要包含了能解释,已知,则的补角的度数为等内容,欢迎下载使用。
六年级下册第五章 基本平面图形综合与测试同步测试题: 这是一份六年级下册第五章 基本平面图形综合与测试同步测试题,共22页。试卷主要包含了如图,一副三角板,用度,已知与满足,下列式子表示的角等内容,欢迎下载使用。