鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题
展开
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共23页。试卷主要包含了如图,点在直线上,平分,,,则,已知,则的补角的度数为,如图,OM平分,,,则等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )A.1个 B.2个 C.3个 D.4个2、如图,O是直线AB上一点,则图中互为补角的角共有( )A.1对 B.2对 C.3对 D.4对3、如图,点,为线段上两点,,且,设,则关于的方程的解是( )A. B. C. D.4、如图,B岛在A岛南偏西55°方向,B岛在C岛北偏西60°方向, C岛在A岛南偏东30°方向.从B岛看A,C两岛的视角∠ABC度数为( )A.50° B.55° C.60° D.65°5、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个6、如图,点在直线上,平分,,,则( )A.10° B.20° C.30° D.40°7、已知,则的补角的度数为( )A. B. C. D.8、如图所示,若,则射线OB表示的方向为( ).A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°9、如图,OM平分,,,则( )A.96° B.108° C.120° D.144°10、平面上有三个点A,B,C,如果,,,则( )A.点C在线段AB的延长线上 B.点C在线段AB上C.点C在直线AB外 D.不能确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知线段AC,点D为AC的中点,B是直线AC的一点,且,,则______.2、已知点C,D在直线AB上,且,若,则CD的长为______.3、转化0.15°为单位秒是______.4、的余角等于__________.5、比较大小:18.25°______18°25′(填“>”“<”或“=”)三、解答题(5小题,每小题10分,共计50分)1、如图,、两点把线段分成三部分,,为的中点.(1)判断线段与的大小关系,说明理由.(2)若,求的长.2、如图,平面上有四个点A,B,C,D.(1)依照下列语句画图:①直线AB,CD相交于点E;②在线段BC的延长线上取一点F,使CF=DC.(2)在四边形ABCD内找一点O,使它到四边形四个顶点的距离的和OA+OB+OC+OD最小,并说出你的理由.3、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为的“三倍距点”,当CB=3CA时,我们称C为的“三倍距点”, 点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b﹣5|=0.(1)a= ,b= ;(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C表示的数为 ;(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当为M,N两点的“三倍距点”时,求t的值.4、已知∠AOB,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.(1)如图,若∠AOB=120°,OC平分∠AOB,①补全图形;②填空:∠MON的度数为 .(2)探求∠MON和∠AOB的等量关系.5、已知线段a,b,点A,P位置如图所示.(1)画射线AP,请用圆规在射线AP上截取AB=a,BC=b;(保留作图痕迹,不写作法)(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长. -参考答案-一、单选题1、A【解析】【分析】根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.【详解】解:①射线AB和射线BA表示不是同一条射线,故此说法错误;②两点之间,线段最短,故此说法正确;③38°15'≠38.15°,故此说法错误;④直线不能度量,所以“画直线AB=3cm”说法是错误的;⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;综上所述,正确的是②,故选:A.【点睛】本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.2、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,故选:B.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.3、D【解析】【分析】先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.【详解】解:,,,,解得,则关于的方程为,解得,故选:D.【点睛】本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.4、D【解析】【分析】根据B岛在A与C的方位角得出∠ABD=55°,∠CBE=60°,再根据平角性质求出∠ABC即可.【详解】解:过点B作南北方向线DE,∵B岛在A岛南偏西55°方向,∴∠ABD=55°,∵B岛在C岛北偏西60°方向,∴∠CBE=60°,∴∠ABC=180°-∠ABD-∠CBE=180°-55°-60°=65°.故选D.【点睛】本题考查方位角,平角,角的和差,掌握方位角,平角,角的和差是解题关键.5、A【解析】【分析】根据直线、线段、射线的区别逐项分析判断即可【详解】解:①图中只有直线BD,1条直线,原说法错误;②图中共有2×3+1×2=8条射线,原说法错误;③图中共有6条线段,即线段,原说法是正确的;④图中射线BC与射线CD不是同一条射线,原说法错误.故正确的有③,共计1个故选:A.【点睛】本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.6、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=∠AOC==,∵∠EOD=50°,∴,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.7、C【解析】【分析】两个角的和为 则这两个角互补,利用补角的含义直接列式计算即可.【详解】解: , 的补角 故选C【点睛】本题考查的是互为补角的含义,掌握“两个角的和为 则这两个角互补”是解本题的关键.8、A【解析】【分析】根据同角的余角相等即可得,,根据方位角的表示方法即可求解.【详解】如图,即射线OB表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.9、B【解析】【分析】设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.【详解】解:设,∵,∴,∴.∵,∴,∴.∵OM平分,∴,∴,解得..故选:B.【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.10、B【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】解:如图:∵AB=8,AC=5,BC=3,从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:B.【点睛】本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.二、填空题1、2cm或8cm##8cm或2cm【解析】【分析】根据题意,,则不可能在的左侧,则分两种情况讨论,①当点在线段上时,②当点在点的右侧时,根据线段中点的性质以及线段和差关系列方程求解即可.【详解】①当点在线段上时,如图,,,即解得②当点在点的右侧时,如图,,,即解得综上所述,或故答案为:2cm或8cm【点睛】本题考查了线段中点的性质,线段和差的计算,分类讨论,数形结合是解题的关键.2、3或7或11【解析】【分析】分三种情况讨论,当在线段上,当在的左边,在线段上,当在的左边,在的右边,再利用线段的和差关系可得答案.【详解】解:如图,当在线段上, ,, 如图,当在的左边,在线段上, ,, 如图,当在的左边,在的右边, ,, 故答案为:3或7或11【点睛】本题考查的是线段的和差运算,清晰的分类讨论是解本题的关键.3、540秒【解析】【分析】先把度化为分,再把分化为秒即可.【详解】故答案为:540秒【点睛】本题考查了度、分、秒之间的互化,注意它们相邻两个单位间的进率都是六十,且高级单位的量化为低级单位的量要乘以进率.4、【解析】【分析】根据和为90°的两个角互为余角解答即可.【详解】解:的余角等于90°-=,故答案为:.【点睛】本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.5、<【解析】【分析】先把化为 从而可得答案.【详解】解: 而 故答案为:<【点睛】本题考查的是角度的大小比较,角的单位换算,掌握“角的60进位制以及大化小用乘法”是解本题的关键.三、解答题1、 (1),见解析(2)50【解析】【分析】(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,表示出CM,即可求解;(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.(1).理由如下:设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,∴AM=DM=AD=5x,∴CM=DM-CD=5x-3x=2x,∴AB=CM;(2)∵CM=10cm,CM=2x,∴2 x=10,解得x=5,∴AD=10x=50cm.【点睛】本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.2、 (1)①作图见详解;②作图见详解(2)作图见详解;理由见详解【解析】(1)① 解:如图所示E即为所求做点,② 如图所示,F点即为所求做点,(2)解:如图连接线段AC,线段BD,两线段交于点O,此时OA+OB+OC+OD最小,理由如下:要求OA+OB+OC+OD,就是求(OA +OC)+(OB +OD)最小,也就是求OA +OC最小,OB +OD最小,当O,A,C,三点在同一直线上时OA +OC最小,当O,B,D,三点在同一直线上时OB +OD最小,故直接连接线段AC,线段BD所交得点为所求作的点.【点睛】本题考查尺规作图,以及直线,线段,射线的定义等知识,能够理解直线,射线,线段的定义是关键.3、 (1)(2)3(3) 或或【解析】【分析】(1)利用非负数的性质可得: 再解方程可得答案;(2)由新定义可得 从而可得答案;(3)当运动时间为秒时,对应的数为 对应的数为 根据新定义分两种情况讨论:当时,则 当时,则 再解方程可得答案.(1)解: 解得: 故答案为:(2)解: 点C在线段AB上,且为[A,B]的“三倍距点”, 点对应的数为: 故答案为:3(3)解:当运动时间为秒时,对应的数为 对应的数为 当时,则 或 解得:,而无解,当时,则 即 或 解得:或【点睛】本题考查的是数轴上的动点问题,平方与绝对值非负性的应用,绝对值方程的应用,一元一次方程的应用,线段的和差倍分关系,熟练的利用方程解决动点问题是解本题的关键.4、 (1)①见解析;②(2),见解析【解析】【分析】(1)①根据∠AOB=120°,OC平分∠AOB,先求出∠BOC=∠AOC=, 在根据OM是∠AOC靠近OA的三等分线,求出∠AOM=,根据ON是∠BOC靠近OB的三等分线,∠BON=,然后在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON即可;②根据∠AOM=,∠BON=,∠AOB=120°,可求∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°即可;(2)根据OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.可求∠AOM=,∠BON=,可得 .(1)①∵∠AOB=120°,OC平分∠AOB,∴∠BOC=∠AOC=, ∵OM是∠AOC靠近OA的三等分线,∴∠AOM=,∵ON是∠BOC靠近OB的三等分线,∴∠BON=,在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON,补全图形;②∵∠AOM=,∠BON=,∠AOB=120°,∴∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°,∴∠MON的度数是80°,故答案为:80°(2)∠MON=∠AOB.∵OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.∴∠AOM=,∠BON=,∴ ,,,.【点睛】本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.5、 (1)见解析(2)3或1【解析】【分析】先根据射线的定义,画出射线AP,然后分两种情况:当点C位于点B右侧时,当点C位于点B左侧时,即可求解;(2)根据M,N分别为AB,BC的中点,可得 ,即可求解.(1)解:根据题意画出图形, 当点C位于点B右侧时,如下图:射线AP、线段AB、线段BC即为所求;当点C位于点B左侧时,如下图:(2)解: ∵M,N分别为AB,BC的中点,∴ ,∵a=4,b=2,∴ ,当点C位于点B右侧时,MN=BM+BN=3;当点C位于点B左侧时,MN=BM-BN=1;综上所述,线段MN的长为3或1.【点睛】本题主要考查了射线的定义,尺规作图——作一条线段等于已知线段,有关中点的计算,熟练掌握射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;作一条线段等于已知线段的作法是解题的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时作业,共24页。试卷主要包含了如图所示,B,如图所示,由A到B有①等内容,欢迎下载使用。
这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试课后练习题,共21页。试卷主要包含了已知与满足,下列式子表示的角,已知线段AB,延长线段至点,分别取等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练,共21页。试卷主要包含了若,则的补角的度数为,下列说法中正确的是等内容,欢迎下载使用。