鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练
展开六年级数学下册第五章基本平面图形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平面上有三个点A,B,C,如果,,,则( )
A.点C在线段AB的延长线上 B.点C在线段AB上
C.点C在直线AB外 D.不能确定
2、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )
A.直线外一点与直线上点之间的连线段有无数条 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段最短
3、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
4、能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( )
A.垂线段最短 B.两点确定一条直线
C.两点之间线段最短 D.同角的补角相等
5、如图,在方格纸中,点A,B,C,D,E,F,H,K中,在同一直线上的三个点有( ).
A.3组 B.4组 C.5组 D.6组
6、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )
A. B. C. D.
7、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )
A.①② B.①③ C.②④ D.③④
8、如图,D、E顺次为线段上的两点,,C为AD的中点,则下列选项正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
9、下列说法正确的是( )
A.正数与负数互为相反数 B.如果x2=y2,那么x=y
C.过两点有且只有一条直线 D.射线比直线小一半
10、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.
2、如图,在平面内有A,B,C三点.请画直线AC,线段BC,射线AB,数数看,此时图中共有 个钝角.
3、的余角等于__________.
4、直线上有A、B、C三点,AB=4,BC=6,则AC=___.
5、如图所示,点C在线段上,,点D是线段的中点.若,则的长为________.
三、解答题(5小题,每小题10分,共计50分)
1、数轴上不重合两点A,B.
(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为 ;
(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为 ;
(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD上一点.设移动的时间为t(t>0)秒,
①用含t的式子填空:点A表示的数为 ;点C表示的数为 ;
②当点O是线段AB的中点时,直接写出t的取值范围.
2、如图,将两块三角板的直角顶点重合.
(1)写出以C为顶点相等的角;
(2)若∠ACB=150°,求∠DCE的度数.
3、如图,点C为线段AB的中点,点E为线段AB上的点,D为AE的中点,若AB=15,CE=4.5,求线段DE.
4、如图,已知点A,B,C,请按要求画出图形.
(1)画直线AB和射线CB;
(2)连结AC,并在直线AB上用尺规作线段AE,使;(要求保留作图痕迹)
5、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)
(1)若,当点运动了,求的值;
(2)若点运动时,总有,试说明;
(3)如图2,已知,是线段所在直线上一点,且,求的值.
-参考答案-
一、单选题
1、B
【解析】
【分析】
本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.
【详解】
解:如图:
∵AB=8,AC=5,BC=3,
从图中我们可以发现AC+BC=AB,
所以点C在线段AB上.
故选:B.
【点睛】
本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.
2、D
【解析】
【分析】
根据题意可知,原因为两点之间线段最短,据此分析即可
【详解】
解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短
故选D
【点睛】
本题考查了线段的性质,掌握两点之间线段最短是解题的关键.
3、A
【解析】
【分析】
根据直线、线段、射线的区别逐项分析判断即可
【详解】
解:①图中只有直线BD,1条直线,原说法错误;
②图中共有2×3+1×2=8条射线,原说法错误;
③图中共有6条线段,即线段,原说法是正确的;
④图中射线BC与射线CD不是同一条射线,原说法错误.
故正确的有③,共计1个
故选:A.
【点睛】
本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.
4、B
【解析】
【分析】
根据两点确定一条直线解答即可.
【详解】
解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,
故选B.
【点睛】
本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键.
5、C
【解析】
【分析】
利用网格作图即可.
【详解】
如图:
在同一直线上的三个点有A、B、C;B、E、K;C、H、E;D、E、F;D、H、K,共5组,
故选:C
【点睛】
此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.
6、B
【解析】
【分析】
由图知,∠AOB=180°−+,从而可求得结果.
【详解】
∠AOB=180°−+=180°-37°=143°
故选:B
【点睛】
本题考查了方位角及角的和差运算,掌握角的和差运算是关键.
7、B
【解析】
【分析】
将每项加上判断结果是否等于90°即可.
【详解】
解:①∵+=90°,故该项是的余角;
②∵,
∴,
∴+=90°+,故该项不是的余角;
③∵,
∴+=90°,故该项是的余角;
④∵,
∴+=120°,故该项不是的余角;
故选:B.
【点睛】
此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.
8、D
【解析】
【分析】
先利用中点的含义及线段的和差关系证明再逐一分析即可得到答案.
【详解】
解: C为AD的中点,
,则
故A不符合题意;
,则
同理: 故B不符合题意;
,则
同理: 故C不符合题意;
,则
同理: 故D符合题意;
故选D
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明”是解本题的关键
9、C
【解析】
【分析】
A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.
【详解】
解:A中正数负数分别为,,错误,不符合要求;
B中,可得或,错误,不符合要求;
C中过两点有且只有一条直线 ,正确,符合要求;
D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;
故选C.
【点睛】
本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.
10、D
【解析】
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
二、填空题
1、两点确定一条直线
【解析】
【分析】
根据两点确定一条直线,即可求解.
【详解】
解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.
故答案为:两点确定一条直线
【点睛】
本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.
2、见详解,3
【解析】
【分析】
直接根据直线、线段、射线的概念画出图形,再由角的概念解答即可.
【详解】
解:作图如下:
由图可得,图中共有3个钝角,
故答案为:3.
【点睛】
此题考查的是角的概念、直线、射线和线段,掌握有公共端点是两条射线组成的图形叫做角是解决此题关键.
3、
【解析】
【分析】
根据和为90°的两个角互为余角解答即可.
【详解】
解:的余角等于90°-=,
故答案为:.
【点睛】
本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.
4、10或2##2或10
【解析】
【分析】
根据题目可分两种情况,C点在B点右测时,C在B左侧时,根据两种情况画图解析即可.
【详解】
解:①
如图一所示,当C点在B点右测时:AC=AB+BC=4+6=10;
②
如图二所示:当C在B左侧时:AC=BC-AB=6-4=2,
综上所述AC等于10或2,
故答案为:10或2.
【点睛】
本题考查,线段的长度,点与点之间的距离,以及分类讨论思想,在解题中能够将分类讨论思想与几何图形相结合是本题的关键.
5、
【解析】
【分析】
先求解 再利用线段的和差关系求解 再利用线段的中点的含义求解即可.
【详解】
解:
点D是线段的中点,
故答案为:
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系”是解本题的关键.
三、解答题
1、 (1)
(2)5
(3)①,;②且
【解析】
【分析】
(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;
(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;
(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为,用点C运动的速度×运动时间+起点表示数得出点C表示的数为;
②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.
(1)
解:∵点A表示的数为﹣3,点B表示的数为1,
∴AB=1-(-3)=1+3=4,
∵点M为AB中点,
∴AM=BM,
∴点M表示的数为:-3+2=-1,
故答案为:-1;
(2)
解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,
∴AN=1-(-3)=1+3=4,
∵点N为AB中点,
∴AB=2AN=2×4=8,
∴点B表示的数为:-3+8=5,
故答案为:5;
(3)
①点A表示的数为,
点C表示的数为,
故答案为:;;
②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,
∴-3+3t+t=5-(-3),
∴t=2,
当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,
∴t≠5,
当点B与点D重合时,点A运动到1,-5+t=1,
∴t=6,
∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.
【点睛】
本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.
2、 (1)∠ACE=∠BCD,∠ACD=∠ECB
(2)30°
【解析】
【分析】
(1)根据余角的性质即可得到结论;
(2)根据角的和差即可得到结论.
(1)
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE=∠BCD+∠DCE=90°,
∴∠ACE=∠BCD;∠ACD=∠ECB=90°
(2)
∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°.
∴∠DCE=90°-∠ACE=90°-60°=30°
【点睛】
本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
3、6
【解析】
【分析】
利用线段中点的含义先求解 再利用线段的和差关系求解 结合D为AE的中点,从而可得答案.
【详解】
解: AB=15,点C为线段AB的中点,
D为AE的中点,
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,理解线段的和差关系逐步求解需要的线段的长度是解本题的关键.
4、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线和射线的定义画图即可;
(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;
(1)
如图所示;
(2)
如图所示,
或
【点睛】
本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.
5、 (1)2cm
(2)见解析
(3)或
【解析】
【分析】
(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;
(2)根据题意可得出,.再由,可求出,从而可求出,即证明;
(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.
(1)
∵时间时,
,,
∴
;
(2)
∵,,
又∵,
∴,
∴,
∴,
∴;
(3)
①如图,当点在线段上时,
∵,
∴,
∴,
∴;
②如图,当点在线段的延长线上时,
∵,
∴,
∴,
③如图,当点在线段的延长线上时,
,这种情况不可能,
综上可知,的值为或.
【点睛】
本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共22页。试卷主要包含了上午10等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试巩固练习: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试巩固练习,共26页。试卷主要包含了已知线段AB,延长线段至点,分别取,上午10等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练,共22页。试卷主要包含了在数轴上,点M等内容,欢迎下载使用。