鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题
展开这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共22页。试卷主要包含了已知线段AB,下列现象,图中共有线段,下列说法错误的是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
2、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )
A.4cm B.36cm C.4cm或36cm D.4cm或2cm
3、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠BOC=20°,则∠AOD等于( )
A.160° B.140° C.130° D.110°
4、将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是( )
A. B.
C. D.
5、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间) B.点B与点D重合
C.点B在线段CD的延长线上 D.点B在线段DC的延长线上
6、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④ B.①③ C.②④ D.③④
7、图中共有线段( )
A.3条 B.4条 C.5条 D.6条
8、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )
A.105° B.125° C.135° D.145°
9、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
10、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点A、B、C三点在同一条直线上,AB=10cm,BC=6cm,则AC =___ cm.
2、直线上有A、B、C三点,AB=4,BC=6,则AC=___.
3、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.
4、如图,已知点是直线上的一点,,.
(1)当时,的度数为__________;
(2)当比的余角大,的度数为__________.
5、一种零件的图纸如图所示,若AB=10mm,BC=50mm,CD=20mm,则AD的长为 _____mm.
三、解答题(5小题,每小题10分,共计50分)
1、补全解题过程.
如图所示,点C是线段AB的中点,延长线段AB至点D,使BD=AB,若BC=3,求线段CD的长.
解:∵点C是线段AB的中点,且BC=3(已知),
∴AB=2× (①填线段名称)= (②填数值)
∵BD=AB(已知),
∴BD= (③填数值),
∴.CD= (④填线段名称)+BD= (⑤填数值).
2、如图,已知线段AB=12cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.
(1)若AC=4cm,EF=___cm;
(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.
3、若关于x,y的多项式的值与字母x取值无关.
(1)求的值;
(2)已知∠AOB=m°,在∠AOB内有一条射线OP,恰好把∠AOB分成1:n的两部分,求∠AOP的度数.
4、如图,是内的两条射线,平分,,若,,求的度数.
5、已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.
(1)如图1,若∠AOD=∠AOB,则∠DOE=________;
(2)如图2,若OF是∠AOD的角平分线,求∠AOE−∠DOF的值;
(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒12°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<)后得到∠COP=∠AOQ,求t的值.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
2、C
【解析】
【分析】
分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.
【详解】
解:当点D在点B的右侧时,
∵,
∴AB=BD,
∵点C为线段AB的中点,
∴BC=,
∵,
∴,
∴BD=4,
∴AB=4cm;
当点D在点B的左侧时,
∵,
∴AD=,
∵点C为线段AB的中点,
∴AC=BC=,
∵,
∴-=6,
∴AB=36cm,
故选C.
【点睛】
本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.
3、A
【解析】
【分析】
如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.
【详解】
解:∵∠AOB=∠COD=90°,∠BOC=20°,
∴∠AOD=∠AOB+∠COD-∠BOC=90°+90°-20°=160°.
故选:A.
【点睛】
此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.
4、C
【解析】
【分析】
A、由图形可得两角互余,不合题意;
B、由图形得出两角的关系,即可做出判断;
C、根据图形可得出两角都为45°的邻补角,可得出两角相等;
D、由图形得出两角的关系,即可做出判断.
【详解】
解:A、由图形得:α+β=90°,不合题意;
B、由图形得:β+γ=90°,α+γ=60°,
可得β﹣α=30°,不合题意;
C、由图形可得:α=β=180°﹣45°=135°,符合题意;
D、由图形得:α+45°=90°,β+30°=90°,可得α=45°,β=60°,不合题意.
故选:C.
【点睛】
本题考查了等角的余角相等,三角尺中角度的计算,掌握三角尺中各角的度数是解题的关键.
5、C
【解析】
【分析】
根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.
【详解】
解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
∴点B在线段CD的延长线上,
故选:C.
【点睛】
本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.
6、C
【解析】
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
7、D
【解析】
【分析】
分别以为端点数线段,从而可得答案.
【详解】
解:图中线段有:
共6条,
故选D
【点睛】
本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.
8、B
【解析】
【分析】
由题意知计算求解即可.
【详解】
解:由题意知
故答案为:B.
【点睛】
本题考查了方位角的计算.解题的关键在于正确的计算.
9、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
10、D
【解析】
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
二、填空题
1、16或4##4或16
【解析】
【分析】
分两种情况讨论,当在的右边时,当在的左边时,再结合线段的和差可得答案.
【详解】
解:如图,当在的右边时,AB=10cm,BC=6cm,
cm,
如图,当在的左边时,AB=10cm,BC=6cm,
cm,
故答案为:16或4
【点睛】
本题考查的是线段的和差关系,利用C的位置进行分类讨论是解本题的关键.
2、10或2##2或10
【解析】
【分析】
根据题目可分两种情况,C点在B点右测时,C在B左侧时,根据两种情况画图解析即可.
【详解】
解:①
如图一所示,当C点在B点右测时:AC=AB+BC=4+6=10;
②
如图二所示:当C在B左侧时:AC=BC-AB=6-4=2,
综上所述AC等于10或2,
故答案为:10或2.
【点睛】
本题考查,线段的长度,点与点之间的距离,以及分类讨论思想,在解题中能够将分类讨论思想与几何图形相结合是本题的关键.
3、两点确定一条直线
【解析】
【分析】
根据两点确定一条直线,即可求解.
【详解】
解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.
故答案为:两点确定一条直线
【点睛】
本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.
4、 45° 20°
【解析】
【分析】
(1)根据∠COA=∠AOE-∠COE求解即可;
(2)设∠BOE=x,则∠BOE的余角为90°-x,然后求出∠COF和∠AOC,继而得到∠AOF=50°,再根据求得∠AOE和∠BOE,根据∠COF=∠COE-∠FOE即可求解.
【详解】
解:(1)∵∠BOE=15°,
∴∠AOE=165°,
∵∠COE=120°,
∴∠COA=∠AOE-∠COE =45°,
故答案为:45°;
(2)设∠BOE=x,
则∠BOE的余角为90°-x,
∵∠FOE比∠B0E的余角大40°,
∴∠FOE=90°-x+40°=130°-x,
∵∠COE=120°,
∴∠COF=∠COE-∠FOE=120°-(130°-x)=x-10°,
∠AOC=180°-∠COE-∠BOE=180°-120°-x=60°-x,
∴∠AOF=∠AOC+∠COF=(60°-x)+(x-10°)=50°,
∵,
∴∠AOE=3∠AOF=150°,
∴∠BOE=180°-∠AOE=180°-150°=30°,即x=30°,
∴∠COF=∠COE-∠FOE= x-10°=30°-10°=20°
故答案为:20°.
【点睛】
本题考查余角、补角的计算,解题的关键是熟知相关知识点.
5、80
【解析】
【分析】
根据AD=AB+BC+CD即可得答案.
【详解】
解:由图可知:AD=AB+BC+CD=10+50+20=80(mm).
故答案为:80.
【点睛】
本题考查了线段的和差,掌握连接两点间的线段长叫两点间的距离是解本题的关键.
三、解答题
1、;;;;
【解析】
【分析】
根据线段的中点的性质以及线段的和差关系填写过程即可
【详解】
解:∵点C是线段AB的中点,且BC=3(已知),
∴AB=2×(①填线段名称)=(②填数值)
∵BD=AB(已知),
∴BD=(③填数值),
∴.CD=(④填线段名称)+BD=(⑤填数值).
【点睛】
本题考查了有关线段中点的计算,线段和差的计算,数形结合是解题的关键.
2、 (1)7
(2)不改变,EF=7cm.
【解析】
【分析】
(1)先求出线段BD,然后再利用线段中点的性质求出AE,BF即可;
(2)利用线段中点的性质证明EF的长度不会发生改变.
(1)
解:∵AB=12cm,CD=2cm,AC=4cm,
∴BD=AB-CD-AC=6(cm),
∵E、F分别是AC、BD的中点,
∴CE=AC=2(cm),DF=BD=3(cm),
∴EF=CE+CD+DF=7(cm);
故答案为:7;
(2)
不改变,
理由:∵AB=12cm,CD=2cm,
∴AC+BD=AB-CD=10(cm),
∵E、F分别是AC、BD的中点,
∴CE=AC,DF=BD,
∴CE+DF=AC+BD=5(cm),
∴EF=CE+CD+DF=7(cm) .
【点睛】
本题考查了两点间距离,熟练掌握线段上两点间距离的求法,灵活应用中点的性质解题是关键.
3、 (1)116
(2)40°或80°
【解析】
【分析】
(1)不含x的项,所以40−m=0,−n+2=0,然后解出m、n即可;
(2)把m和n代入,分∠AOP:∠BOP=1:2和∠AOP:∠BOP=2:1两种情况讨论,列式计算即可.
(1)
解:由题可知:40−m=0,−n+2=0,
解得:m=120,n=2,
∴m−n2=120−22=116;
(2)
解:由(1)得:m=120,n=2,
∴∠AOB=120°,
如图①,当∠AOP:∠BOP=1:2时,
∠AOP=∠AOB=40°;
如图②,当∠AOP:∠BOP=2:1时,
∠AOP=∠AOB=80°;
综上:∠AOP=40°或80°.
.
【点睛】
本题考查了整式的加减,一元一次方程的解,以及角的运算,熟练掌握运算法则是解本题的关键.
4、80°
【解析】
【分析】
设∠BOE为x°,则∠DOB=55°-x°,∠EOC=2x°,然后根据角平分线定义列方程解决求出∠BOE,可得∠EOC.
【详解】
解:设∠BOE=x°,则∠DOB=55°﹣x°,
由∠BOE=∠EOC可得∠EOC=2x°,
由OD平分∠AOB,
得∠AOB=2∠DOB,
故有2x+x+2(55﹣x)=150,
解方程得x=40,
故∠EOC=2x=80°.
【点睛】
本题主要考查了角平分线的定义以及角的计算,根据角平分线的性质和已知条件列方程求解.方程思想是解决问题的基本思考方法.
5、 (1)25°
(2)∠AOE-∠DOF=40°
(3)t的值为秒或秒
【解析】
【分析】
(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;
(2)先由角平分线定义得∠AOF=∠DOF=∠AOD,∠AOE=∠AOC,再证∠AOE-∠AOF=∠COD,即可得出答案;
(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.
(1)
解:(1)∵∠AOB=90°,
∴∠AOD=∠AOB=30°,
∵∠COD=80°,
∴∠AOC=∠AOD+∠COD=30°+80°=110°,
∵OE平分∠AOC,
∴∠AOE=∠COE=∠AOC=55°,
∴∠DOE=∠AOE-∠AOD=55°-30°=25°;
(2)
解:∵OF平分∠AOD,
∴∠AOF=∠DOF=∠AOD,
∵OE平分∠AOC,
∴∠AOE=∠AOC,
∴∠AOE-∠AOF=∠AOC-∠AOD=(∠AOC-∠AOD)=∠COD,
又∵∠COD=80°,
∴∠AOE-∠DOF=×80°=40°;
(3)
解:分三种情况:
①当射线OP、OQ在∠AOC内部时,即0<t≤时,
由题意得:∠POE=(12t)°,∠DOQ=(8t)°,
∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,
∵∠COP=∠AOQ,
∴55-12t=(30-8t),
解得:t=(舍去);
②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即<t≤时,
则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,
∴55-12t=(8t-30),
解得:t=;
③当射线OP、OQ在∠AOC外部时,即<t<时,
则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,
∴12t-55=(8t-30),
解得:t=;
综上所述,t的值为秒或秒.
【点睛】
本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.
相关试卷
这是一份2021学年第五章 基本平面图形综合与测试同步练习题,共23页。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练,共21页。试卷主要包含了若,则的补角的度数为,下列说法中正确的是等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共23页。试卷主要包含了如图,点在直线上,平分,,,则,已知,则的补角的度数为,如图,OM平分,,,则等内容,欢迎下载使用。