初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步练习题
展开六年级数学下册第五章基本平面图形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点在直线上,平分,,,则( )
A.10° B.20° C.30° D.40°
2、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
3、如图,点N为线段AM上一点,线段.第一次操作:分别取线段AM和AN的中点,;第二次操作:分别取线段和的中点,;第三次操作:分别取线段和的中点,;……连续这样操作,则第十次操作所取两个中点形成的线段的长度为( )
A. B. C. D.
4、如图,射线OA所表示的方向是( )
A.西偏南30° B.西偏南60° C.南偏西30° D.南偏西60°
5、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )
A.一对 B.二对 C.三对 D.四对
6、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
7、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )
A. B. C. D.
8、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
9、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( )
A.两点确定一条直线 B.两点之间直线最短
C.两点之间线段最短 D.直线有两个端点
10、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个角为,则它的余角度数为 _____.
2、一个圆的周长是31.4cm,它的半径是_____cm,面积是_____cm2.
3、钟面上4时30分,时针与分针的夹角是______度,15分钟后时针与分针的夹角是_____度.
4、如图,点,是直线上的两点,点,在直线上且点在点的左侧,点在点的右侧,,.若,则____.
5、如图,点B是线段AC上一点,且AB=15cm,,点O是线段AC的中点,则线段OB=______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知点C是线段AB的中点,点D在线段BC上.且CD=BD,点E是线段AD的中点.若CD=4.求线段CE的长.
2、如图,已知A,B,C,D四点,按下列要求画图形:
(1)画射线CD;
(2)画直线AB;
(3)连接DA,并延长至E,使得AE=DA.
3、在数轴上,点A表示的数为1,点B表示的数为3.对于数轴上的图形M,给出如下定义:P为图形M上任意一点,Q为线段AB上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M关于线段AB的极小距离,记作d1(M,线段AB);如果线段PQ的长度有最大值,那么称这个最大值为图形M关于线段AB的极大距离,记作d2(M,线段AB).例如:点K表示的数为4,则d1(点K,线段AB)=1,d2(点K,线段AB)=3.
已知点O为数轴原点,点C,D为数轴上的动点.
(1)d1(点O,线段AB)= ,d2(点O,线段AB)= ;
(2)若点C,D表示的数分别为m,m+2,d1(线段CD,线段AB)=2.求m的值;
(3)点C从原点出发,以每秒2个单位长度沿x轴正方向匀速运动;点D从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x轴正方向匀速运动,第2秒以每秒4个单位长度沿x轴负方向匀速运动,第3秒以每秒6个单位长度沿x轴正方向匀速运动,第4秒以每秒8个单位长度沿x轴负方向匀速运动,…,按此规律运动,C,D两点同时出发,设运动的时间为t秒,若d2(线段CD,线段AB)小于或等于6,直接写出t的取值范围.(t可以等于0)
4、已知∠AOB是直角,∠AOC是锐角,OC在∠AOB的内部,OD平分∠AOC,OE平分∠BOC.
(1)根据题意画出图形;
(2)求出∠DOE的度数;
(3)若将条件“∠AOB是直角”改为“∠AOB为锐角,且∠AOB=n°”,其它条件不变,请直接写出∠DOE的度数.
5、点是直线上的一点,,平分.
(1)如图,若,求的度数.
(2)如图,若,求的度数.
-参考答案-
一、单选题
1、A
【解析】
【分析】
设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.
【详解】
解:设∠BOD=x,
∵OD平分∠COB,
∴∠BOD=∠COD=x,
∴∠AOC=180°-2x,
∵∠AOE=3∠EOC,
∴∠EOC=∠AOC==,
∵∠EOD=50°,
∴,
解得:x=10,
故选A.
【点睛】
本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.
2、B
【解析】
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
3、A
【解析】
【分析】
根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,再由M2N2的长度求出M2N2的长度,从而找到规律,即可求出MnNn的结果.
【详解】
解:∵线段MN=20,线段AM和AN的中点M1,N1,
∴M1N1=AM1-AN1
∵线段AM1和AN1的中点M2,N2;
∴M2N2=AM2-AN2
∵线段AM2和AN2的中点M3,N3;
∴M3N3=AM3-AN3
.......
∴
∴
故选:A.
【点睛】
本题考查了与线段中点有关的线段的和差,根据线段中点的定义得出是解题关键.
4、D
【解析】
【详解】
解:,
根据方位角的概念,射线表示的方向是南偏西60度.
故选:D.
【点睛】
本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
5、C
【解析】
【分析】
根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.
【详解】
解:∵∠BOC=90°,∠COD=45°,
∴∠AOC=90°,∠BOD=45°,∠AOD=135°,
∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,
∴图中互为补角的角共有3对,
故选:C.
【点睛】
本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.
6、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
7、C
【解析】
【分析】
根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.
【详解】
解:,
点A到原点的距离最大,点其次,点最小,
又,
原点的位置是在点、之间且靠近点的地方,
,
故选:.
【点睛】
此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.
8、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
9、A
【解析】
【分析】
根据直线公理“两点确定一条直线”来解答即可.
【详解】
解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.
故选:A.
【点睛】
本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.
10、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
二、填空题
1、
【解析】
【分析】
根据余角的定义计算即可.
【详解】
解:90°-,=,
故答案为:.
【点睛】
本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.
2、 5 78.5
【解析】
【分析】
设圆的半径为.先利用圆的周长公式求出,再利用圆的面积公式即可得.
【详解】
解:设圆的半径为,
由题意得:,
解得,
则圆的面积为,
故答案为:5,78.5.
【点睛】
本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.
3、 45° 127.5°
【解析】
【分析】
根据时钟上一大格是30°,时针每分钟转0.5°进行计算即可.
【详解】
解:根据题意:钟面上4时30分,时针与分针的夹角是 ;
15分钟后时针与分针的夹角是 .
故答案为:45°,127.5°
【点睛】
本题考查了钟面角,熟练掌握时钟上一大格是30°,时针每分钟转0.5°是解题的关键.
4、6或22##22或6
【解析】
【分析】
根据两点间的距离,分情况讨论C点的位置即可求解.
【详解】
解:∵,
∴点C不可能在A的左侧,
如图1,当C点在A、B之间时,
设BC=k,
∵AC:CB=2:1,BD:AB=3:2,
则AC=2k,AB=3k,BD=k,
∴CD=k+k=k,
∵CD=11,
∴k=11,
∴k=2,
∴AB=6;
如图2,当C点在点B的右侧时,
设BC=k,
∵AC:CB=2:1,BD:AB=3:2,
则AC=2k,AB=k,BD=k,
∴CD=k-k=k,
∵CD=11,
∴k=11,
∴k=22,
∴AB=22;
∴综上所述,AB=6或22.
【点睛】
本题考查了两点间的距离,线段的数量关系,以及一元一次方程的应用,分类讨论是解答本题的关键.
5、5cm
【解析】
【分析】
先求出AC,再由中点定义求出CO即可得到OB.
【详解】
解:∵AB=15cm,,
∴AC=AB+BC=15+5=20(cm);
∵点O是线段AC的中点,
∴CO=AC=×20=10(cm),
∴OB=CO﹣BC=10﹣5=5(cm).
故答案为:5cm.
【点睛】
此题考查了线段的和与差计算,正确掌握线段中点的定义及各线段之间的位置关系是解题的关键.
三、解答题
1、线段CE的长6.
【解析】
【分析】
根据线段的和差,线段中点的性质,可得答案.
【详解】
解:因为点D在线段BC上,点C是线段AB的中点,点E是线段AD的中点,
∵CD=4,CD=BD,
∴BD=3CD=3×4=12,
∴BC=CD+BD=4+12=16,
∵点C是线段AB的中点,
∴AC=BC=16,
∵AD=AC+CD=16+4=20,
∵点E是线段AD的中点.
∴DE=AD=×20=10,
CE=DE-CD=10-4=6.
答:线段CE的长6.
【点睛】
本题考查了两点间的距离,利用线段和差、线段中点的性质是解题关键.
2、 (1)见解析
(2)见解析
(3)见解析
【解析】
【分析】
(1)画射线CD即可;
(2)画直线AB即可;
(3)连接DA,并延长至E,使得AE=DA即可.
(1)
解:如图所示,射线CD即为所求作的图形;
(2)
解:如图所示,直线AB即为所求作的图形;
(3)
解:如图所示,连接DA,并延长至E,使得AE=DA.
【点睛】
本题考查了作图-复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.
3、 (1)1,3
(2)﹣3或5
(3)或
【解析】
【分析】
(1)根据定义即可求得答案;
(2)由题意易得CD=2,然后分两种情况讨论m的值,即当CD在AB的左侧时和当CD在AB的右侧时;
(3)由题意可分当t=0时,点C表示的数为0,点D表示的数为﹣2,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,当t=5时,点C表示的数为10,点D表示的数为4,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,进而问题可求解.
(1)
解:d1(点O,线段AB)=OA=1﹣0=1,d2(点O,线段AB)=OB=3﹣0=3,
故答案为:1,3;
(2)
解:∵点C,D表示的数分别为m,m+2,
∴点D在点C的右侧,CD=2,
当CD在AB的左侧时,d1(线段CD,线段AB)=DA=1﹣(m+2)=2,
解得:m=﹣3,
当CD在AB的右侧时,d1(线段CD,线段AB)=BC=m﹣3=2,
解得:m=5,
综上所述,m的值为﹣3或5;
(3)
解:当t=0时,点C表示的数为0,点D表示的数为﹣2,则d2=5,
当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,则d2=5﹣2t<6,
当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,则d2=4t﹣1≤6,
解得:t≤,
当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,则d2=19﹣6t≤6,
解得:t≥,
当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,则d2=8t﹣23≤6或2t﹣1≤6,
解得:t≤,
当t=5时,点C表示的数为10,点D表示的数为4,则d2=AC=10﹣1=9>6,
当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,(﹣6<10t﹣46≤4),
∴0≤BD≤9,7≤AC≤9,
∴d2>6,不符合题意,
综上所述,d2(线段CD,线段AB)小于或等于6时,0≤t≤或≤t≤.
【点睛】
本题考查了学生对新定义的理解及分类讨论的应用,正确理解定义及准确的分类是解决本题的关键.
4、 (1)见解析
(2)45°
(3)n°
【解析】
【分析】
(1)根据要求画出图形即可;
(2)利用角平分线的定义计算即可;
(3)利用(2)中,结论解决问题即可.
(1)
解:图形如图所示.
,
(2)
解:∵OD平分∠AOC,OE平分∠BOC,
∴∠DOC=∠AOC,∠EOC=∠BOC,
∴∠DOE=(∠AOC+∠BOC)=∠AOB,
∵∠AOB=90°,
∴∠DOE=45°;
(3)
解:当∠AOB为锐角,且∠AOB=n°时,由(2)可知∠DOE=n°.
【点睛】
本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
5、(1)=25°;(2)
【解析】
【分析】
(1)结合题意,根据平角的性质,得,根据角平分线的性质,得;根据余角的性质计算,即可得到答案;
(2)设,根据角平分线性质,得,结合,通过列一元一次方程并求解,得;再通过角度和差计算,即可得到答案.
【详解】
(1)∵是一个平角
∴
∴
∵
∴
∴;
(2)设,则
∵平分
∴
∵
∴
∴
∴
∴
∴.
【点睛】
本题考查了角、角平分线、一元一次方程的知识;解题的关键是熟练掌握角平分线、余角、角度和差运算、一元一次方程的性质.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题,共25页。试卷主要包含了已知线段AB,如图所示,B,已知点C等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题,共21页。试卷主要包含了能解释,已知,则的补角的度数为等内容,欢迎下载使用。
数学六年级下册第五章 基本平面图形综合与测试精品当堂达标检测题: 这是一份数学六年级下册第五章 基本平面图形综合与测试精品当堂达标检测题,共24页。试卷主要包含了如图,D,能解释,已知,则的补角等于等内容,欢迎下载使用。