初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练
展开六年级数学下册第五章基本平面图形章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各角中,为锐角的是( )
A.平角 B.周角 C.直角 D.周角
2、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
3、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
4、若,则的补角的度数为( )
A. B. C. D.
5、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )
A.东南方向 B.西南方向 C.东北方向 D.西北方向
6、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )
A.5 B.6 C.7 D.8
7、下列说法中正确的是( )
A.两点之间直线最短 B.单项式πx2y的系数是
C.倒数等于本身的数为±1 D.射线是直线的一半
8、如图,O是直线AB上一点,则图中互为补角的角共有( )
A.1对 B.2对 C.3对 D.4对
9、下列图形中,能用,,三种方法表示同一个角的是( )
A. B.
C. D.
10、如图,下列说法不正确的是( )
A.直线m与直线n相交于点D B.点A在直线n上
C.DA+DB<CA+CB D.直线m上共有两点
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、阳阳在月月的西南方向200m处,则月月在阳阳的_____方向_____m处.
2、北京时间21点30分,此时钟表的时针和分针构成的角度是____________.
3、如图,点Q在线段AP上,其中PQ=10,第一次分别取线段AP和AQ的中点P1,Q1,得到线段P1Q1,则线段P1Q1=_____;再分别取线段AP1和AQ1的中点P2,Q2,得到线段P2Q2;第三次分别取线段AP2和AQ2的中点P3,Q3,得到线段P3Q3;连续这样操作2021次,则每次的两个中点所形成的所有线段之和P1Q1+P2Q2+P3Q3+…+P2021Q2021=_____.
4、西北方向:_________;西南方向:__________;东南方向:__________;东北方向:__________
5、90°-32°51′18″=______________.
三、解答题(5小题,每小题10分,共计50分)
1、已知,,,分别平分,.
(1)如图1,当,重合时, 度;
(2)若将的从图1的位置绕点顺时针旋转,旋转角,满足且.
①如图2,用等式表示与之间的数量关系,并说明理由;
②在旋转过程中,请用等式表示与之间的数量关系,并直接写出答案.
2、已知线段a,b,点A,P位置如图所示.
(1)画射线AP,请用圆规在射线AP上截取AB=a,BC=b;(保留作图痕迹,不写作法)
(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长.
3、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.
(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m.
(2)燕化附中在燕山向阳小学的 方向.
(3)小辰从燕山向阳小学出发,沿正东方向走200m,右转进入岗南路,沿岗南路向南走150m,左转进入迎风南路,沿迎风南路向正东方向走450m到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.
4、按要求作答:如图,已知四点A、B、C、D,请仅用直尺和圆规作图,保留画图痕迹.
(1)①画直线AB;
②画射线BC;
③连接AD并延长到点E,在射线AE上截取AF,使AF=AB+BC;
(2)在直线BD上确定一点P,使PA+PC的值最小,并写出画图的依据 .
5、如图,点为线段上一点,点为的中点,且.求线段的长.
-参考答案-
一、单选题
1、B
【解析】
【分析】
求出各个选项的角的度数,再判断即可.
【详解】
解:A. 平角=90°,不符合题意;
B. 周角=72°,符合题意;
C. 直角=135°,不符合题意;
D. 周角=180°,不符合题意;
故选:B.
【点睛】
本题考查了角的度量,解题关键是明确周角、平角、直角的度数.
2、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
3、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
4、C
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵,
∴的补角的度数为.
故选:C
【点睛】
本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.
5、B
【解析】
略
6、C
【解析】
【分析】
根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.
【详解】
解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,
而题目中从一个顶点引出4条对角线,
∴n-3=4,得到n=7,
∴这个多边形的边数是7.
故选:C.
【点睛】
本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.
7、C
【解析】
【分析】
分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.
【详解】
解:A.两点之间线段最短,故不符合题意;
B.单项式πx2y的系数是,不符合题意;
C.倒数等于本身的数为±1,故符合题意;
D.射线是是直线的一部分,故不符合题意;
故选:C.
【点睛】
本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.
8、B
【解析】
【分析】
根据补角定义解答.
【详解】
解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
故选:B.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
9、A
【解析】
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
10、D
【解析】
【分析】
根据直线相交、点与直线、两点之间线段最短逐项判断即可得.
【详解】
解:A、直线与直线相交于点,则此项说法正确,不符合题意;
B、点在直线上,则此项说法正确,不符合题意;
C、由两点之间线段最短得:,则此项说法正确,不符合题意;
D、直线上有无数个点,则此项说法不正确,符合题意;
故选:D.
【点睛】
本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.
二、填空题
1、 东北 200
【解析】
【分析】
根据方向角的定义解答即可.
【详解】
解:阳阳在月月的西南方向m处,则月月在阳阳的东北方向m处.
故答案为:东北,200.
【点睛】
本题考查方向角,解题的关键是理解题意,灵活运用所学知识解决问题.
2、105
【解析】
【分析】
根据题意,得3、9点所在直线和6、12点所在直线垂直,通过角度的乘除和和差运算,即可得到答案.
【详解】
如图
∵3、9点所在直线和6、12点所在直线垂直
∴北京时间21点30分时,分针和x的夹角为:
∴此时钟表的时针和分针构成的角度是:
故答案为:105.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角度的乘除和和差计算,即可得到答案.
3、 5
【解析】
【分析】
根据线段中点定义分别求出,据此得到规律代入计算即可.
【详解】
解:∵线段AP和AQ的中点为P1,Q1,
∴,
∵AP>AQ,
∴P1Q1==5;
∵线段AP1和AQ1的中点为P2,Q2,
∴,
∴,
同理:,,
∴P1Q1+P2Q2+P3Q3+…+P2021Q2021
=
=
设①,
则②,
①-②得,
∴,
∴P1Q1+P2Q2+P3Q3+…+P2021Q2021=,
故答案为:5,.
【点睛】
此题考查了数轴上两点之间的距离公式,线段中点的定义,有理数的混合运算,规律的总结与计算,根据线段中点定义列得规律是解题的关键.
4、 射线OE 射线OF 射线OG 射线OH
【解析】
略
5、
【解析】
【分析】
根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减,可得答案.
【详解】
解:90°-32°51′18″=89°60′-32°51′18″=89°59′60″-32°51′18″′=57°8′42″.
故答案为:57°8′42″.
【点睛】
本题考察了度分秒的换算,度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减.1°=60′,1′=60″.
三、解答题
1、 (1)
(2)①;②时,;时,
【解析】
【分析】
(1)由题意得出,,由角平分线定义得出,,即可得出答案;
(2)①由角平分线定义得出,,求出,即可得出答案;
②由①得,,
当时,求出,,即可得出答案;
当时,求出,,即可得出答案.
(1)
,重合,
,,
平分,平分,
,,
;
(2)
①;理由如下:
平分,平分,
,,
,
;
②由①得:,,
当时,如图2所示:
,
,
,
∴
当时,如图3所示:
,
,
;
∴
综上所述,时,;时,
【点睛】
本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键.
2、 (1)见解析
(2)3或1
【解析】
【分析】
先根据射线的定义,画出射线AP,然后分两种情况:当点C位于点B右侧时,当点C位于点B左侧时,即可求解;
(2)根据M,N分别为AB,BC的中点,可得 ,即可求解.
(1)
解:根据题意画出图形,
当点C位于点B右侧时,如下图:
射线AP、线段AB、线段BC即为所求;
当点C位于点B左侧时,如下图:
(2)
解: ∵M,N分别为AB,BC的中点,
∴ ,
∵a=4,b=2,
∴ ,
当点C位于点B右侧时,MN=BM+BN=3;
当点C位于点B左侧时,MN=BM-BN=1;
综上所述,线段MN的长为3或1.
【点睛】
本题主要考查了射线的定义,尺规作图——作一条线段等于已知线段,有关中点的计算,熟练掌握射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;作一条线段等于已知线段的作法是解题的关键.
3、 (1)正西,100
(2)南偏东77°
(3)见解析
【解析】
【分析】
(1)根据图中位置解决问题即可.
(2)根据图中位置解决问题即可.
(3)根据题意画出路线即可.
(1)
燕山前进二小在燕山前进中学的正西方向,距离大约是.
故答案为:正西,100.
(2)
燕化附中在燕山向阳小学的南偏东方向
故答案为:南偏东.
(3)
小辰行走的路线如图:
【点睛】
本题考查作图应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.
4、 (1)①见解析,②见解析,③见解析
(2)图见解析,两点之间,线段最短
【解析】
【分析】
(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;
(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.
(1)
①如图所示:连接AB作直线即可;
②连接BC并延长即为射线BC;
③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;
(2)
画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,
故答案为:两点之间,线段最短.
【点睛】
题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.
5、14cm
【解析】
【分析】
根据点B为的中点和可求得CD的长,根据图中线段的关系即可求解.
【详解】
解:∵点B是的中点,,
∴,
又∵,
∴.
【点睛】
本题考查了线段的相关知识,解题的关键是根据线段中点的定义正确求解.
2021学年第五章 基本平面图形综合与测试同步练习题: 这是一份2021学年第五章 基本平面图形综合与测试同步练习题,共23页。
数学鲁教版 (五四制)第五章 基本平面图形综合与测试课后练习题: 这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试课后练习题,共21页。试卷主要包含了已知与满足,下列式子表示的角,已知线段AB,延长线段至点,分别取等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时作业: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时作业,共22页。试卷主要包含了下列说法中正确的是,如图,点在直线上,平分,,,则,下列说法等内容,欢迎下载使用。