初中数学冀教版九年级下册第30章 二次函数综合与测试一课一练
展开九年级数学下册第三十章二次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是( )
A.或6 B.或6 C.或6 D.或
2、根据表格对应值:
x | 1.1 | 1.2 | 1.3 | 1.4 |
ax2+bx+c | ﹣0.59 | 0.84 | 2.29 | 3.76 |
判断关于x的方程ax2+bx+c=2的一个解x的范围是( )
A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定
3、抛物线y=﹣2(x﹣3)2﹣4的对称轴是( )
A.直线x=3 B.直线x=﹣3 C.直线x=4 D.直线x=﹣4
4、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
5、已知二次函数的图象经过,,则b的值为( )
A.2 B. C.4 D.
6、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
7、对于抛物线下列说法正确的是( )
A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
8、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
9、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为( )
A.2 B.3 C.3 D.D3
10、抛物线的顶点坐标为( )
A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知抛物线,将其图象先向右平移1个单位长度,再向上平移2个单位长度,则得到的抛物线解析式为________.
2、定义:直线y=ax+b(a≠0)称作抛物线y=ax2+bx(a≠0)的关联直线. 根据定义回答以下问题:
(1)已知抛物线y=ax2+bx(a≠0)的关联直线为y=x+2, 则该抛物线的顶点坐标为_________;
(2)当a=1时, 请写出抛物线y=ax2+bx与其关联直线所共有的特征(写出一条即可):___________________________________.
3、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.
4、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.
5、某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x,那么十月份医用防护服的产量y(万件)与x之间的函数表达式为______.
三、解答题(5小题,每小题10分,共计50分)
1、已知一抛物线的顶点为(2,4),图象过点(1,3).
(1)求抛物线的解析式;
(2)动点P(x,5)能否在抛物线上?请说明理由;
(3)若点A(a,y1),B(b,y2)都在抛物线上,且a<b<0,比较y1,y2的大小,并说明理由.
2、如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、点B、点C的坐标;
(2)求直线BD的解析式;
(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;
(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
3、超市销售某种儿童玩具,如果每件利润为40元(市场管理部分规定,该种玩具每件利润不能超过60元),每天可售出50件,根据市场调查发现,销售单价每增加2元,每天销售量会减少1件,设销售单价增加元,每天售出件
(1)请写出与之间的函数表达式
(2)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?
4、已知二次函数的图象经过点.
(1)求二次函数的表达式;
(2)求二次函数的图象与轴的交点坐标.
5、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.
(1)求抛物线的解析式;
(2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
表示出对称轴,分三种情况,找出关于m的方程,解之即可得出结论.
【详解】
解:∵y=-x2+mx,
∴抛物线开口向下,抛物线的对称轴为x=-,
①当≤-2,即m≤-4时,当x=-2时,函数最大值为5,
∴-(-2)2-2m=5,
解得:m=-;
②当≥1,即m≥2时,当x=1时,函数最大值为5,
∴-12+m=5,
解得:m=6.
③当-2<<1,即-4<m<2时,当x=时,函数最大值为5,
∴-()2+m•=5
解得m=2(舍去)或m=-2(舍去),
综上所述,m=-或6,
故选:C.
【点睛】
本题考查了二次函数的最值、解一元二次方程,解题的关键是:分三种情况,找出关于m的方程.
2、B
【解析】
【分析】
利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.
【详解】
解:当x=1.3时,ax2+bx+c=2.29,
当x=1.2时,ax2+bx+c=0.84,
∵0.84<2<2.29,
∴方程解的范围为1.2<x<1.3,
故选:B
【点睛】
本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.
3、A
【解析】
【分析】
直接利用抛物线y=﹣2(x﹣3)2﹣4,求得对称轴方程为:x=3.
【详解】
解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,
故选:A.
【点睛】
本题考查了二次函数的性质与图象,解题的关键是掌握:二次函数的顶点式与对称轴的关系.
4、B
【解析】
【分析】
根据二次函数图象左加右减,上加下减的平移规律进行求解.
【详解】
解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
再向上平移5个单位长度,得:y=(x﹣3)2+5,
故选:B.
【点睛】
本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
5、C
【解析】
【分析】
由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
【详解】
解: 二次函数的图象经过,,
二次函数图象的对称轴为:
解得:
故选C
【点睛】
本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
6、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
C.由图象可知,当x=1时,y=,故C不符合题意,
D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
故选:D.
【点睛】
本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
7、D
【解析】
【分析】
根据二次函数的性质对各选项分析判断即可得解.
【详解】
解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
∴A选项不正确;
由抛物线,可知其最小值为-2,∴B选项不正确;
由抛物线,可知其顶点坐标,∴C选项不正确;
在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
8、B
【解析】
【分析】
根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
【详解】
解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b<0,与y轴交点在负半轴,因此c<0,所有abc>0,因此②正确的;
由关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,就是当y=m时,对应抛物线上有两个不同的点,即(x1,m),(x2,m),由图象可知此时m>-2
因此④正确的,
综上所述,正确的有2个,
故选:B.
【点睛】
考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
9、B
【解析】
【分析】
先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.
【详解】
∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),
∴y=a(x+2)2+2,
∵与y轴交于点A(0,3),
∴3=a(0+2)2+2,解得a=
∴原抛物线的解析式为:y=(x+2)2+2,
∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),
∴平移后的抛物线为y=(x﹣1)2﹣1,
∴当x=0时,y=,
∴A′的坐标为(0,),
∴AA′的长度为:3﹣()=3.
故选:B.
【点睛】
本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
10、A
【解析】
【分析】
根据抛物线的顶点坐标为 ,即可求解.
【详解】
解:抛物线的顶点坐标为.
故选:A
【点睛】
本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.
二、填空题
1、
【解析】
【分析】
根据抛物线的平移规律:上加下减,左加右减解答即可.
【详解】
解:∵抛物线的顶点坐标为(0,2),
其图象先向右平移1个单位长度,再向上平移2个单位长度,
得到的抛物线解析式为
即
故答案为:
【点睛】
本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.
2、 (-1,-1) (1,1+b).
【解析】
【分析】
(1)由关联直线的定义可求得a和b的值,可求得抛物线解析式,化为顶点式可求得其顶点坐标;
(2)由关联直线的定义可求得关联直线解析式,可写出其共有特征.
【详解】
解:(1)∵抛物线y=ax2+bx(a≠0)的关联直线为y=x+2,
∴a=1,b=2,
∴抛物线解析式为y=x2+2x=(x+1)2-1,
∴抛物线顶点坐标为(-1,-1),
故答案为:(-1,-1);
(2)当a=1时,抛物线解析式为y=x2+bx,则关联直线解析式为y=x+b,
∴当x=1时,函数值都为1+b,
∴抛物线及其关联直线都过点(1,1+b),
故答案为:过点(1,1+b).
【点睛】
本题主要考查二次函数的性质,理解好题目中所给关联直线的解析式与抛物线解析式之间的关系是解题的关键.
3、
【解析】
【分析】
首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.
【详解】
解:开口向下,
中,
与轴的交点纵坐标为3,
,
抛物线的解析式可以为:(答案不唯一).
故答案为:(答案不唯一).
【点睛】
本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.
4、x<−2或x>4## x>4或x<-2
【解析】
【分析】
先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.
【详解】
解:∵二次函数y1=x2-2x+b的图象过点(-2,5),
∴5=(-2)2-2×(-2)+b,
解得:b=-3,
∴二次函数解析式y1=x2-2x-3,
∴抛物线开口向上,对称轴为x=-=1,
∴抛物线过点(4,5),
∴符合条件y1>y2的x的范围是x<-2或x>4.
故答案为:x<-2或x>4.
【点睛】
本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.
5、
【解析】
【分析】
某工厂今年八月份医用防护服的产量是50万件,月平均增长率为x,则九月份的产量为万件,十月份医用防护服的产量为万件,从而可得答案.
【详解】
解:十月份医用防护服的产量y(万件)与x之间的函数表达式为
故答案为:
【点睛】
本题考查的是列二次函数关系式,掌握“两次变化后的量=原来量(1+增长率)2”是解本题的关键.
三、解答题
1、 (1)
(2)不在,见解析
(3)y1<y2,见解析
【解析】
【分析】
(1)根据已知条件设抛物线的解析式为顶点式,把点(1,3)的坐标代入所设的解析式中即可求得a,从而可求得函数解析式;
(2)把点P的纵坐标代入抛物线的解析式中,得到关于x的二元一次方程,若方程有解,则点P在抛物线,否则不在抛物线上;
(3)抛物线的对称轴为直线x=2,根据抛物线的增减性质即可比较大小.
(1)
设抛物线的解析式为
把点(1,3)的坐标代入中,得a+4=3
∴
即抛物线的解析式为;
(2)
动点P(x,5)不在抛物线上
理由如下:
在中,当y=5时,得
即
此方程无解
故点P不在抛物线上;
(3)
y1<y2
理由如下:
抛物线的对称轴为直线x=2
∵二次项系数−1<0,且
∴函数值随自变量的增大而增大
即y1<y2
【点睛】
本题考查了待定系数法求二次函数的解析式,二次函数与一元二次方程的关系,二次函数的图象与性质等知识,熟练掌握这些知识是关键,属于二次函数的基础题目.
2、 (1)A(﹣1,0),B(4,0),C(0,2)
(2)y=x﹣2
(3)当m=2时,四边形CQMD是平行四边形
(4)存在,(3,2),(8,﹣18),(﹣1,0)
【解析】
【分析】
(1)根据函数解析式列方程即可得到结论;
(2)由点C与点D关于x轴对称,得到D(0,﹣2),解方程即可得到结论;
(3)如图1所示:根据平行四边形的性质得到QM=CD,设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),列方程即可得到结论;
(4)设点Q的坐标为(m,﹣m2+m+2),分两种情况:①当∠QBD=90°时,根据勾股定理列方程求得m=3,m=4(不合题意,舍去),②当∠QDB=90°时,根据勾股定理列方程求得m=8,m=﹣1,于是得到结论.
(1)
解:∵令x=0得;y=2,
∴C(0,2).
∵令y=0得:﹣x2+x+2=0,
解得:x1=﹣1,x2=4.
∴A(﹣1,0),B(4,0).
(2)
解:∵点C与点D关于x轴对称,
∴D(0,﹣2).
设直线BD的解析式为y=kx﹣2.
∵将(4,0)代入得:4k﹣2=0,
∴k=.
∴直线BD的解析式为y=x﹣2.
(3)
解:如图1所示:
∵,
∴当QM=CD时,四边形CQMD是平行四边形.
设点Q的坐标为(m,﹣m2+m+2),
则M(m,m﹣2),
∴﹣m2+m+2﹣(m﹣2)=4,
解得:m=2,m=0(不合题意,舍去),
∴当m=2时,四边形CQMD是平行四边形;
(4)
解:存在,设点Q的坐标为(m,﹣m2+m+2),
∵△BDQ是以BD为直角边的直角三角形,
∴①当∠QBD=90°时,
由勾股定理得:BQ2+BD2=DQ2,
即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,
解得:m=3,m=4(不合题意,舍去),
∴Q(3,2);
②当∠QDB=90°时,
由勾股定理得:BQ2=BD2+DQ2,
即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,
解得:m=8,m=﹣1,
∴Q(8,﹣18),(﹣1,0),
综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).
【点睛】
此题考查了求抛物线与坐标轴的交点,求一次函数的解析式,平行四边形的性质,解一元二次方程,勾股定理的应用,解题的关键是理解题意,综合掌握各知识点并应用解决问题.
3、 (1)
(2)当x为20时w最大,最大值是2400元
【解析】
【分析】
(1)根据“每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件”列函数关系式即可;
(2)根据题意得到w=,根据二次函数的性质得到当x<30时,w随x的增大而增大,于是得到结论.
(1)
解:根据题意得,;
(2)
根据题意得,w==,
∵a=<0,
∴当x<30时,w随x的增大而增大,
∵40+x≤60,x≤20,
∴当x=20时,w最大=2400,
答:当x为20时w最大,最大值是2400元.
【点睛】
本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.
4、 (1)y=x 2+ x﹣;
(2)(0,﹣).
【解析】
【分析】
(1)利用待定系数法,把代入函数解析式即可求;
(2)令x=0,求得y的值即可得出结论.
(1)
解:∵二次函数y=a(x+1)2﹣2的图象经过点(﹣5,6),
∴a(﹣5+1)2﹣2=6.
解得:a=.
∴二次函数的表达式为:y=(x+1)2﹣2,即y=x 2+ x﹣;
(2)
解:令x=0,则y=×(0+1)2﹣2=﹣,
∴二次函数的图象与y轴的交点坐标为(0,﹣).
【点睛】
本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)根据二次函数的对称轴及过一点,建立等式进行求解;
(2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
(1)
解:对称轴为,
把代入得:,
解得:,
抛物线的解析式为;
(2)
解:设点D的坐标为,
点D在BC的下方,
,
,
,
,
,
是等腰三角形,
,
轴,
E的坐标为,
,
,
,
当时,的最大值是.
【点睛】
本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
冀教版九年级下册第30章 二次函数综合与测试精品综合训练题: 这是一份冀教版九年级下册第30章 二次函数综合与测试精品综合训练题,共42页。试卷主要包含了二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
冀教版九年级下册第30章 二次函数综合与测试优秀当堂达标检测题: 这是一份冀教版九年级下册第30章 二次函数综合与测试优秀当堂达标检测题,共27页。
初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。