


初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题,共26页。
六年级数学下册第五章基本平面图形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B在线段EF上,点M,N分别是线段EA,BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长为( )cmA.10 B.11 C.12 D.132、如图所示,若,则射线OB表示的方向为( ).A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°3、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )A. B. C. D.4、如图,点O在CD上,OC平分∠AOB,若∠BOD=153°,则∠DOE的度数是( )A.27° B.33° C.28° D.63°5、如图,O是直线AB上一点,则图中互为补角的角共有( )A.1对 B.2对 C.3对 D.4对6、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )A.3cm B.4cm C.5cm D.6cm7、如图所示,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示8、如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD的长为( )A.2 B.4 C.6 D.89、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )A. B.C. D.10、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有( )A.①④ B.①③ C.②④ D.③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、式子的最小值是______.2、如图,点B是线段AC上一点,且AB=15cm,,点O是线段AC的中点,则线段OB=______.3、把一个直径是10厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加_______厘米.4、当时钟指向下午2:40时,时针与分针的夹角是_________度.5、下列结论:①多项式的次数为3;②若,则OP平分∠AOB;③满足的整数x的值有5个;④若,则关于x的一元一次方程的解为.其中正确的结论是___(填序号).三、解答题(5小题,每小题10分,共计50分)1、已知,,,分别平分,.(1)如图1,当,重合时, 度;(2)若将的从图1的位置绕点顺时针旋转,旋转角,满足且.①如图2,用等式表示与之间的数量关系,并说明理由;②在旋转过程中,请用等式表示与之间的数量关系,并直接写出答案.2、如图,点C为线段AD上一点,点B为CD的中点,且AC=6cm,BD=2cm.(1)求线段AD的长;(2)若点E在直线AD上,且EA=3cm,求线段BE的长.3、已知O是直线MN上一点,∠MOA=40°,∠AOB=90°,∠COD与∠AOB都在直线MN的上方,且射线OC在射线OD的左侧.(1)如图1,射线OC在∠AOB的内部,如果∠COD=90°,那么图中与∠AOC相等的角是 ,其依据是: .(2)如图2,用直尺和圆规作∠AOB的平分线OP,如果∠COD=60°,且OC平分∠AOP,那么∠DON= °;(保留作图痕迹,不要求写出作法和结论)(3)如果∠COD=60°,设∠AOC=m°(0<m<80,且m≠30),用含m的式子表示∠BOD的度数.(直接写出结论)4、如图,∠AOB是平角,,,OM、ON外别是∠AOC、∠BOD的平分线,求∠MON的度数.5、如图,已知A,B,C,D四点,按下列要求画图形:(1)画射线CD;(2)画直线AB;(3)连接DA,并延长至E,使得AE=DA. -参考答案-一、单选题1、C【解析】【分析】由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.【详解】解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA=x,NB=BFx,∴MN=MA+AB+BN=x+2x+x=4x,∵MN=16cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故选C.【点睛】本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2、A【解析】【分析】根据同角的余角相等即可得,,根据方位角的表示方法即可求解.【详解】如图,即射线OB表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.3、B【解析】【分析】先求出,再根据中点求出,即可求出的长.【详解】解:∵,∴,,∵点是线段的中点,∴,,故选:B.【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.4、D【解析】【分析】先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.【详解】解:∵∠BOD=153°,∴∠BOC=180°-153°=27°,∵CD为∠AOB的角平分线,∴∠AOC=∠BOC=27°,∵∠AOE=90°,∴∠DOE=90°-∠AOC=63°故选:D.【点睛】本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.5、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,故选:B.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.6、B【解析】【分析】设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.【详解】解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,∵M为AB的中点,∴AM=BM,即BM=(8﹣x)cm,∵N为CB的中点,∴CN=NB,∴NB,∴MC+NB=x+(4﹣x)=4(cm),故选:B.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.7、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.【点睛】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.8、A【解析】【分析】根据线段中点的定义计算即可.【详解】解:∵点C是线段AB的中点,∴AC=,又∵点D是线段AC的中点,∴CD=,故选:A.【点睛】本题考查了线段中点的定义,掌握线段中点的定义是关键.9、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.10、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.二、填空题1、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P与点C不重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+PC;∵AE+BD+PC> AE+BD,∴当点P与点C重合时,点P到A、B、C、D、E各点的距离之和最小,令数轴上数x表示的为P,则表示点P到A、B、C、D、E各点的距离之和,∴当x=2时,取得最小值,∴的最小值==5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.2、5cm【解析】【分析】先求出AC,再由中点定义求出CO即可得到OB.【详解】解:∵AB=15cm,,∴AC=AB+BC=15+5=20(cm);∵点O是线段AC的中点,∴CO=AC=×20=10(cm),∴OB=CO﹣BC=10﹣5=5(cm).故答案为:5cm.【点睛】此题考查了线段的和与差计算,正确掌握线段中点的定义及各线段之间的位置关系是解题的关键.3、10【解析】【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米.故答案为:10.【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.4、【解析】【分析】如图,钟面被等分成12份,每一份对应的角为先求解 根据时针每分钟转,再求解 从而可得答案.【详解】解:如图,时钟指向下午2:40时, 钟面被等分成12份,每一份对应的角为 时针每分钟转 故答案为:【点睛】本题考查的是钟面角的计算,角的和差关系,掌握“钟面被等分成12份,每一份对应的角为时针每分钟转”是解本题的关键.5、①③④【解析】【分析】根据多项式的次数的含义可判断A,根据角平分线的定义可判断B,根据绝对值的含义与数轴上两点之间的距离可判断C,由一元一次方程的定义与一元一次方程的解法可判断D,从而可得答案.【详解】解:多项式的次数为3,故①符合题意;如图,,但OP不平分∠AOB;故②不符合题意,如图,当时,满足的整数x的值有,有5个;故③符合题意; , 为关于x的一元一次方程,则 ,故④符合题意;综上:符合题意的有①③④故答案为:①③④【点睛】本题考查的是多项式的次数,角平分线的定义,绝对值的含义,数轴上两点之间的距离,一元一次方程的定义及解一元一次方程,掌握以上基础知识是解本题的关键.三、解答题1、 (1)(2)①;②时,;时,【解析】【分析】(1)由题意得出,,由角平分线定义得出,,即可得出答案;(2)①由角平分线定义得出,,求出,即可得出答案;②由①得,,当时,求出,,即可得出答案;当时,求出,,即可得出答案.(1),重合,,,平分,平分,,,;(2)①;理由如下:平分,平分,,,,;②由①得:,,当时,如图2所示:,,,∴当时,如图3所示:,,;∴综上所述,时,;时,【点睛】本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键.2、 (1)(2)BE=5或11【解析】【分析】(1)根据线段中点的定义和线段的和差即可得到结论;(2)分当点E在点A的左侧时和当点E在点A的右侧时两种情况,根据线段中点的定义和线段的和差即可得到结论.(1)解:因为点B为CD的中点,BD=2cm,所以CD=2BD=4cm,又因为AC=6cm,所以AD=AC+CD=10cm;(2)解:当点E在点A的左侧时,如图所示:则BE=EA+CA+BC,因为点B为CD的中点,所以BC=BD=2cm,因为EA=3cm,CA=6cm,所以BE=2+3+6=11(cm).当点E在点A的右侧时,如图所示:∵AC=6cm,EA=3cm,∴BE=AB﹣AE=AC+BC﹣AE=6+2﹣3=5(cm).综上,BE=5cm或11cm.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论是解题的关键.3、 (1),等角的余角相等(2)图见解析,(3)或【解析】【分析】(1)根据等角的余角相等解决问题即可.(2)根据,求出,即可.(3)分两种情形:当时,根据求解,如图中,当时,根据,求解即可.(1)解:如图1中,,,(等角的余角相等),故答案为:等角的余角相等.(2)解:如图2中,如图,射线即为所求.,,,平分,,平分,,,.(3)解:如图中,当时,.如图中,当时,.综上所述,满足条件的的值为或.【点睛】本题考查作图复杂作图,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.4、【解析】【分析】根据角平分线的定义求出,再用平角减去即可得到结果.【详解】解:∵∠AOB是平角,∴ ∵OM、ON外别是∠AOC、∠BOD的平分线,且∠AOC=80°,∠BOD=30°,∴,,∴∠MON=∠AOB-∠AOM-∠BON=180°-40°-15°=125°.【点睛】本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON=∠COD+∠COM+∠DON.5、 (1)见解析(2)见解析(3)见解析【解析】【分析】(1)画射线CD即可;(2)画直线AB即可;(3)连接DA,并延长至E,使得AE=DA即可.(1)解:如图所示,射线CD即为所求作的图形;(2)解:如图所示,直线AB即为所求作的图形;(3)解:如图所示,连接DA,并延长至E,使得AE=DA.【点睛】本题考查了作图-复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共21页。试卷主要包含了已知线段AB,已知,则∠A的补角等于,在数轴上,点M,如图,射线OA所表示的方向是,已知,则的补角等于等内容,欢迎下载使用。
这是一份数学六年级下册第五章 基本平面图形综合与测试同步测试题,共19页。试卷主要包含了延长线段至点,分别取,如图所示,由A到B有①,下列说法等内容,欢迎下载使用。
这是一份2021学年第五章 基本平面图形综合与测试课后作业题,共23页。试卷主要包含了如图,OM平分,,,则等内容,欢迎下载使用。
